Cyclopentadienyil-ruthenium and -osmium chemistry

XXXVI *. Oligomerisation of phenylacetylide residues on ruthenium. Crystal structures of $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}$ $\left(\mu-\mathrm{C}_{8} \mathrm{Ph}_{4}\right)$ and $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mu-\mathrm{C}_{10} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}$

Michael I. Bruce, George A. Koutsantonis, Michael J. Liddell and Edward R.T. Tiekink
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

(Received June 24th, 1991)

Abstract

Reactions between $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{AgC}_{2} \mathrm{Ph}$ afforded a deep blue binuclear complex, shown by X-ray crystallography to contain a planar tricyclic diruthenadicyclobutadieno[a,c]benzene system, formed by tetramerisation of phenylacetylide residues at the ruthenium centres. A deep purple complex, isolated in small yield from the same reaction, was similarly shown to contain a diruthenapentacyclic system, formed by an unprecedented oligomerisation of five phenylacetylide units. Related reactions have given $\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2} \mathrm{Ag} \backslash \mathrm{PF}_{6}\right]$ and the divinylidene $\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\eta\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$.

Introduction

Transition metal-induced oligomerisation reactions of alkynes have been known for many years and have proved to be a continuing source of exotic complexes containing ligands formed from the alkynes, sometimes with incorporation of other groups present on the metal, such as CO or isocyanides [2]. Development of many of these reactions into sources of organic materials often followed, and sometimes preceded, an understanding of the mechanisms of the metal-based reactions. Few of these reactions resulted in combination of more than three molecules of alkyne, although the tetramerisation to cyclooctatetraenes is an old example, only relatively recently understood [3]. We have described well-characterised tri- and tetra-mers of $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ formed at an $\mathrm{Ru}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ centre [4], while related reactions at dinuclear centres have also been reported [5].

The oxidative coupling of acetylide groups, usually using a copper(I) intermediate, is a well established synthetic method, either as the Glaser reaction [6] or

[^0]
$\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}$

(2)
(1)
later, the Cadiot-Chodkiewicz modification [7]. There is an increasing number of transition metal-centred couplings of acetylide fragments, which have also given unusual unsaturated C_{4} ligands. The reaction between $\mathrm{NaC}_{2} \mathrm{Ph}$ and $\mathrm{TiCl}_{2}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}$ gave complex 1 containing two $\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}$ moieties attached to 1,4-diphenyl-1,3-butadiyne [8]; the same diyne was found in 2, which was formed when $\mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ was heated [9]. Oxidative coupling of two PhC_{2} ligands was observed on osmium, the reaction between cis- $\mathrm{Os}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ with AgPF_{6} affording $\mathrm{Os}\left(\eta^{3}-\mathrm{PhC} \equiv \mathrm{CC}=\mathrm{CHPh}\right)\left(\mathrm{PMe}_{3}\right)_{4}$ (3) [10]. Similar products have been obtained from reactions between 1-alkynes and FeX_{2} (dmpe) ${ }_{2}\left(\mathrm{X}_{2}=\mathrm{Cl}_{2}\right.$ [11], $\left.\left.\left[\mathrm{H}_{(} \mathrm{H}_{2}\right)\right]^{+}[12]\right)$ or $\mathrm{RuH}_{4}(\mathrm{cyttp})\left(\mathrm{cyttp}=\mathrm{PPh}\left\{\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PCy}_{2}\right\}_{2}\right)$ [13]. Related reactions are also suggested as an alternative explanation for the formation of the cumulene derivative 4 from $\mathrm{HC}_{2} \mathrm{CF}_{3}$ and a ruthenium precursor [14]. Nickel acetylide complexes have been found to undergo thermally induced rearrangements in which three acetylide residues have combined [15]. Thus, oxidative addition of $\mathrm{ClC}_{2} \mathrm{SiMe}_{3}$ to Ni^{0} complexes gave $\mathrm{NiCl}\left(\mathrm{C}_{2} \mathrm{SiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$, which, after halide exchange, afforded $\left.\mathrm{NiX}\left\{\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{2} \mathrm{SiMe}_{3}\right)\right\}\left(\mathrm{PMe}_{3}\right)_{2}$ (5) (Scheme 1) on heating in the solid state. Interestingly, substitution of halide by $\mathrm{LiC}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$ gave trans$\mathrm{Ni}\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)\left\{\mathrm{C}\left(\mathrm{C}_{2} \mathrm{SiMe}_{3}\right)=\mathrm{C}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{C}_{2} \mathrm{SiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(6)\right.$, which under CO reductively eliminated the unusual olefin $\left(\mathrm{Me}_{3} \mathrm{Si}\right)\left(\mathrm{Me}_{3} \mathrm{SiC}_{2}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{C}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{C}_{2} \mathrm{SiMe}_{3}\right)$ (7) by coupling of $s p$ and $s p^{2}$ carbons. Simple coupling of acetylide and vinyl ligands has been known since 1977 when vinylacetylide ligands were obtained from $\mathrm{MX}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{M}=\mathrm{Ru}, \mathrm{Os} ; \mathrm{X}=\mathrm{H}\right.$ or $\left.\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$ and phenylacetylene, possibly by reaction of $\mathrm{M}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ with more $\mathrm{HC}_{2} \mathrm{Ph}$ [16]; these complexes were also obtained from the hydride and $\mathrm{PhC}_{2} \mathrm{C}_{2} \mathrm{Ph}$. However, to our knowledge there are no examples of reactions in which more than three acetylide moieties have been oligomerised at a transition metal centre.

(3)

(4)
$\left.\mathrm{Ni}^{(\mathrm{PMe}} \mathrm{P}_{3}\right)_{4}+\mathrm{Me}_{3} \mathrm{Si}-\mathrm{C=C}-\mathrm{Cl}$
$\mathrm{NiCl}(\mathrm{C}=\mathrm{CSiMe} 3)\left(\mathrm{PMe}_{3}\right)_{2}$

Scheme 1

Several years ago, we described the reactions of copper(I) acetylides with a variety of transition metal halide complexes [17]. Among these were reactions with $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ which gave the first examples of η^{2}-alkyne-copper(I) complexes 8, subsequently obtained by direct reactions between the acetylides and copper(I) halides [18]. We have now investigated similar reactions of silver(I) phenylacetylide and found that these take a completely different course to afford unusual dimetalla-polycyclic systems which form the subject of this paper.

(8)

Results and discussion

The reaction between $\mathrm{AgC}_{2} \mathrm{Ph}$ and $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ in refluxing toluene gave a dark coloured solution over a silver mirror. Chromatographic separation afforded several products, of which dark blue 9 and dark purple 10 have been crystallographically characterised. The best yields of 9 were obtained by quenching the reaction when spot TLC analysis showed that all the chloro complex had been consumed. Continued heating of 9 in refluxing toluene resulted in complete decomposition after 30 min , as shown independently; the products were not identified. Complex 10 was always obtained as a minor product from the synthesis of 9 .

The molecular structure of 9 is shown in Fig. 1 and important bond distances are collected in Table 1 . Two $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moieties are bridged by a $\mathrm{C}_{8} \mathrm{Ph}_{4}$ ligand, being attached to it by $\mathrm{Ru}-\mathrm{C}$ single bonds from the central six-membered ring $[\mathrm{Ru}(1)-\mathrm{C}(11) 2.062(7), \mathrm{Ru}(2)-\mathrm{C}(14) 2.051(7) \AA$] and by $\mathrm{Ru}-\mathrm{C}$ carbene interactions from the side chains $[\mathrm{Ru}(1)-\mathrm{C}(17) 1.982(7), \mathrm{Ru}(2)-\mathrm{C}(24) 1.997(7) \AA]$. The small bite of the ligand results in severe distortions within the four-membered RuC_{3} rings as shown by the inter-ring angles at $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ of $64.8(3)^{\circ}$, which results in angles of between $96-100^{\circ}$ at the carbon atoms. The $\mathrm{Ru}_{2} \mathrm{C}_{8}$ skeleton forms a planar $4 / 6 / 4$ tricyclic unit which can be described as a diruthenadicyclobutadiene[a, c]benzene. The $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ units have conventional geometries, each metal having approximately octahedral coordination, with $\mathrm{Ru}-\mathrm{C}(\mathrm{cp}) 2.26 \AA$ (av.), Ru-P $2.309 \AA$ (av.).

The spectroscopic properties of 9 can be interpreted with the aid of the molecular structure. The ${ }^{13} \mathrm{C}$ NMR spectrum contains resonances at $\delta 87.0$ and 138.3 for the $\mathrm{C}_{5} \mathrm{H}_{5}$ and σ-carbons, respectively; all other carbons resonate as a series of multiplets between $\delta 125-134.5$. The resonances of the carbenic carbons were not observed, perhaps because of slow decomposition in solution. An exhaustive search of the ${ }^{1} \mathrm{H}$ NMR spectrum failed to reveal any hydrogens other than those of the phenyl ($\delta 6.4-7.3$) and $\mathrm{C}_{5} \mathrm{H}_{5}$ groups ($\delta 4.7$). The FAB mass spectrum contains a molecular ion centred on $m / z 1262$, which fragments mainly by loss of

(9)

(10)
$\mathrm{Ph}, \mathrm{PPh}_{3}$ and $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ groups; the usual strong ion at $m / z 429$ confirms the presence of the $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moiety.

The purple complex 10 was identified as containing one more $\mathrm{C}_{2} \mathrm{Ph}$ group than 9 by mass spectrometry, having a molecular ion at $m / z 1363$; the only other prominent ions are $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$and the organic fragment $\left[\mathrm{C}_{7} \mathrm{Ph}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]^{+}$ at m / z 391. The X-ray structure (Fig. 2) shows that this complex also contains two

Fig. 1. Molecular structure of $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Ph}_{4}\right)$ (9) showing atom numbering scheme. For reasons of clarity only the ipso C atoms of the PPh_{3} groups are shown.

Table 1
Selected bond distances (\AA) and angles (deg.) in 9 and 10

	9	10
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.308(2)$	2.310(5)
$\mathrm{Ru}(2)-\mathrm{P}(2)$	2.310(2)	2.321(5)
$\mathrm{Ru}(1)-\mathrm{C}(\sigma)$	$2.062(7)$	2.04(1)
$\mathrm{Ru}(2)-\mathrm{C}(\sigma)$	$2.051(7)$	2.06 (2)
$\mathrm{Ru}(1)-\mathrm{C}(\mathrm{carb})$	$1.982(7)$	1.96(2)
$\mathrm{Ru}(2)-\mathrm{C}(\mathrm{carb})$	$1.997(7)$	1.91(2)
$\mathrm{Ru}(1)-\mathrm{C}(\mathrm{cp})$	2.239-2.270(9)	2.26-2.33(2)
(av.)	2.257	2.29
$\mathrm{Ru}(2)-\mathrm{C}(\mathrm{cp})$	2.232-2.269(8)	2.23-2.35(2)
(av.)	2.253	2.29
$\mathrm{C}(11)-\mathrm{C}(12)$	1.411(9)	1.44(2)
C(11)-C(16)	1.40(1)	
C(12)-C(13)	1.44(1)	1.47(2)
$\mathrm{C}(12)-\mathrm{C}(17)$	1.44(1)	1.41(2)
C(13)-C(14)	1.41(1)	1.37(2)
C(13)-C(15)		1.44(2)
C(13)-C(24)	1.432(9)	
C(14)-C(15)	1.419(9)	
C(15)-C(16)	1.43(1)	1.38(2)
$\mathrm{C}(16)-\mathrm{C}(17)$		1.45(2)
$\mathrm{C}(16)-\mathrm{C}(20)$		1.49(2)
$\mathrm{C}(17)-\mathrm{C}(18)$		1.49(2)
$\mathrm{C}(18)-\mathrm{C}(19)$		1.42(2)
$\mathrm{C}(19)-\mathrm{C}(20)$		1.52(2)
C(19)-C(21)		1.46(2)
C(21)-C(22)		1.41(2)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(\sigma)$	90.1(2)	90.3(4)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(\sigma)$	90.9(2)	83.9(4)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}$ (carb)	92.2(2)	95.8(5)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}$ (carb)	93.1(2)	100.4(5)
$\mathrm{C}(\boldsymbol{\sigma})-\mathrm{Ru}(1)-\mathrm{C}(\mathrm{carb})$	64.8(3)	80.6(6)
$\mathrm{C}(\boldsymbol{\sigma})-\mathrm{Ru}(2)-\mathrm{C}($ carb)	64.8(3)	80.8(6)

In 9, $\mathrm{C}(\sigma)$ are $\mathrm{C}(11), \mathrm{C}(14), \mathrm{C}(\mathrm{carb})$ are $\mathrm{C}(17), \mathrm{C}(24)$; in $10, \mathrm{C}(\sigma)$ are $\mathrm{C}(14), \mathrm{C}(22), \mathrm{C}(\mathrm{carb})$ are $\mathrm{C}(11)$, C(20).
$\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ groups attached via $\mathrm{Ru}-\mathrm{C}$ single $[\mathrm{Ru}(1)-\mathrm{C}(14)$ 2.04(1), $\mathrm{Ru}(2)-$ $\mathrm{C}(22), 2.06(2) \AA$] and multiple bonds [$\mathrm{Ru}(1)-\mathrm{C}(11) 1.96(2), \mathrm{Ru}(2)-\mathrm{C}(20) 1.91(2) \AA]$ to a polycyclic ligand formed from five phenylacetylide residues. The central feature is a pentalene fused to a ruthenacyclopentadiene ring; in the latter, localised multiple bonds are found between $\mathrm{Ru}(1)-\mathrm{C}(11)$ and $\mathrm{C}(13)-\mathrm{C}(14)$ [1.44(2) \AA], the metal also being σ-bonded to $\mathrm{C}(14)$. The second ruthenium is multiplybonded to $\mathrm{C}(20)$ of the pentalene and metallates one of the phenyl rings at $\mathrm{C}(22)$. Overall, the pentacyclic $5 / 5 / 5 / 5 / 6$ system is planar; the maximum deviation from the mean plane defined by $\mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{C}(11)-\mathrm{C}(26)$ is $0.18 \AA$ for $\mathrm{C}(23)$; alternatively, $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ are 0.016 and $0.112 \AA$ out of the $\mathrm{C}(11)-\mathrm{C}(26)$ plane.

The ring system combines the structural features of a methylenepentalene fused to a metallacyclopentadiene; it is the first example of a pentalene-metal complex which does not involve stabilisation of this sytem by π-complexation to the metal.

Fig. 2. Molecular structure of $\left(\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left(\mu-\mathrm{C}_{10} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}$ (10) showing atom numbering scheme. For reasons of clarity only the ipso C atoms of the PPh_{3} groups are shown.

It is of interest that the conjugated system is fixed; although the precision of the X-ray determination scarcely enables $\mathrm{C}-\mathrm{C}$ single and $\mathrm{C}=\mathrm{C}$ double bonds to be distinguished, the different $\mathrm{Ru}-\mathrm{C}$ distances are well established.

The $\mathrm{Ru}-\mathrm{C}$ multiple bonds found in 9 and 10 are further examples to add to the growing number of such features found in other ruthenium complexes recently described. These include the $\eta^{3}(4 \mathrm{e})$-butadienyl ligands found in $\mathrm{Ru}\left\{\eta^{3}-\right.$ $\left.\mathrm{C}(\mathrm{CN})_{2} \mathrm{CPhC}=\mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (11) and related complexes [19], the $\eta^{4}(5 \mathrm{e})$-butadienyl ligand in $\mathrm{Ru}\left(\eta^{4}-\mathrm{CPhCPhCPhCHPh}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (12) [20] and the metallacyclopentatriene ring in $\mathrm{RuBr}\left(\eta^{2}-\mathrm{CPhCHCHCPh}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (13) [21].

The routes by which these unusual complexes are formed are presently matters of speculation. Qualitative experiments have established the formation of complexes analogous to 9 in reactions involving $\mathrm{AgC}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}-\mathrm{p}\right)(\mathrm{X}=\mathrm{H}, \mathrm{Me})$ and $\mathrm{RuCl}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}-p\right)_{3}\right\}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)\left(\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{H}\right.$, Me); other silver(I) acetylides reacted to give $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{R}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. The intermediacy of species such as, or related to, $\mathrm{PhC}_{2} \mathrm{C}_{2} \mathrm{Ph}$ or $\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\right]^{2+}$, formed by oxidative coupling of either the $\mathrm{C}_{2} \mathrm{Ph}$ fragments or the ruthenium σ-phenylacetylide, is supported by the deposition of silver metal during the reactions.

On paper, reaction schemes can be described which allow construction of these complexes with surprisingly little rearrangement. Scheme 2 is an example. Initial formation of the σ-phenylacetylide complex is followed by oxidative coupling to form the divinylidene complex. Related complexes have been described [22]. Further coupling with 1,4-diphenylbuta-1,3-diyne, also formed by oxidative coup-

(11)

(12)

(13)

Scheme 2

Scheme 3

(14)

(15)
ling of phenylacetylide residues, could lead to 9 in the manner shown. However, we have not been successful in making 9 from either of these precursors; these processes may be concerted.

In the case of 10 , a more tentative scheme is illustrated as Scheme 3. A concerted rearrangement of two molecules of 1,4-diphenylbuta-1,3-diyne with the σ-phenylacetylide and a second ruthenium centre, followed by a conventional cyclometallation reaction, is required to generate 10 . Of interest is the attachment of $\mathrm{Ru}(1)$ to two carbons bearing phenyl groups, indicating that the σ-phenylacetylide complex is unlikely to be directly involved.

Some related reactions

Addition of AgPF_{6} to two equivalents of $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(14)$ in toluene at $0^{\circ} \mathrm{C}$ resulted in the immediate precipitation of $\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\eta\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2} \mathrm{Ag}\right]\left[\mathrm{PF}_{6}\right]$ (15) in quantitative yield. This air-stable yellow complex decomposes on attempted purification by chromatography on silica, and was identified from its spectroscopic and analytical properties. In the IR spectrum of 15, the $\nu(\mathrm{C} \equiv \mathrm{C})$ modes are found at 1984 and $1943 \mathrm{~cm}^{-1}$, compared with $2068 \mathrm{~cm}^{-1}$ in 14; there is also the strong $\nu(\mathrm{PF})$ band associated with the counterion. The NMR ${ }^{13}$ spectra contained the anticipated resonances from the $\mathrm{C}_{5} \mathrm{H}_{5}$ and Ph groups, and a ${ }^{13} \mathrm{C}$ resonance at $\delta 91.1$ is assigned to C_{β}. The FAB mass spectrum contained a parent ion at $m / z 1692$, which fragmented with competitive loss of $\mathrm{Ag}, \mathrm{PPh}_{3}$ and $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$. An ion at $\mathrm{m} / z 529$ loses $\mathrm{C}_{6} \mathrm{H}_{4}$, then C_{2}, to give the usual base peak at $m / z 429,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$.

These data are accommodated by structure 15 for this complex, which is related to that found for $\left[\left\{\mathrm{Mn}\left(\mathrm{C}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{CO})_{3}(\mathrm{dppe})\right\}_{2} \mathrm{Cu}\right]\left[\mathrm{PF}_{6}\right]$ as a representative of similar complexes formed by Cu, Ag and Au [23]. We have also described the closely related derivative $\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2} \mathrm{Cu}\right]\left[\mathrm{PF}_{6}\right]$, which has a similar IR spectrum [24].

A similar reaction between equimolar amounts of $\mathrm{AgC}_{2} \mathrm{Ph}$ and 14 also resulted in the formation of 15 . However, if $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added, the precipitate dissolved and the colour of the solution rapidly darkened to red. Work-up gave a pale apricot powder identified as $\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ (16). In the IR spectrum, broad medium intensity bands at 1626 and $1587 \mathrm{~cm}^{-1}$ are characteristic of the vinylidene $\nu(\mathrm{C}=\mathrm{C})$; the strong band at $840 \mathrm{~cm}^{-1}$ is $\nu(\mathrm{PF})$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, two equal intensity resonances at $\delta 5.42$ and 5.59 were
assigned to inequivalent $\mathrm{C}_{5} \mathrm{H}_{5}$ resonances. Similarly, two peaks at $\delta 91.1$ and 95.5 in the ${ }^{13} \mathrm{C}$ NMR spectrum were assigned to the $\mathrm{C}_{5} \mathrm{H}_{5}$ carbons, while a broad, low intensity signal at $\delta 347.6$ is assigned to C_{α}. The highest mass ion in the FAB mass spectrum was at $m / z 1729$, assigned to $\left[\mathrm{M}+\mathrm{PF}_{6}\right]^{+}$; an ion at $m / z 1583$ corresponds to $[M-\mathrm{H}]^{+}$, and $\left[\mathrm{Ru}\left(\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$occurs at m / z 631. Complex 16 has the divinylidene structure illustrated, and is analogous to the crystallographically characterised $\left[\left\{\mathrm{Fe}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Me}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$, which was obtained by oxidation of $\left[\mathrm{Fe}\left(\mathrm{CCMe}_{2}\right)(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$[22]. More recently, the molybdenum complexes $\left[\left\{\mathrm{Mo}(\mathrm{dppe})\left(\eta-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{R}_{2}\right)\right]^{+}$have been described [25].

(16)

Work continues to uncover further and possibly more extensive systems available from metal-induced oxidative coupling of acetylide residues.

Experimental

General conditions

All reactions were carried out under dry, high purity nitrogen using standard Schlenk techniques. Solvents were dried and distilled before use. Elemental analyses were by the Canadian Microanalytical Service, Delta, B.C., Canada V4G 1G7. TLC was carried out on glass plates ($20 \times 20 \mathrm{~cm}$) coated with silica gel (Merck $60 \mathrm{GF}_{254}, 0.5 \mathrm{~mm}$ thick).

Reagents. Complex 1 was prepared as previously described [8]. $\mathrm{Me}_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich) was dehydrated by sublimation ($100^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$).

Instrumentation. IR: Perkin-Elmer 1700X FT IR; 683 double beam, NaCl optics; NMR: Bruker CXP300 (${ }^{1} \mathrm{H}$ NMR at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 75.47 MHz). Spectra recorded in non-deuterated solvents used an external concentric tube containing $\mathrm{D}_{2} \mathrm{O}$ for field lock. FAB MS: VG ZAB 2HF (FAB MS, using 3-nitrobenzyl alcohol as matrix, exciting gas $\mathrm{Ar}, \mathrm{FAB}$ gun voltage 7.5 kV , current 1 mA , accelerating potential 7 kV).

Starting materials. Published methods were used to prepare $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}(\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [26]. Silver phenylacetylide was obtained by addition of $\mathrm{HC}_{2} \mathrm{Ph}$ in EtOH to an aqueous ammoniacal solution of AgNO_{3}; the product was filtered off, washed with EtOH and dried. AgPF_{6} was used as received (Pennwàlt Chemicals, Tulsa, OK).

Reaction between $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{AgC} \mathrm{C}_{2} \mathrm{Ph}$
A suspension of $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(127 \mathrm{mg}, 0.175 \mathrm{mmol})$ and $\mathrm{AgC}_{2} \mathrm{Ph}(130$ $\mathrm{mg}, 0.622 \mathrm{mmol}$) was heated in refluxing toluene (30 ml) for 1 h . The mixture was
filtered, the filtrate was evaporated to dryness, and the residue was chromatographed (Florisil; $3 \times 20 \mathrm{~cm}$). Elution (acetone/light petroleum, $1 / 9$) gave a blue-green fraction which was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}\right)$ to give dark blue crystals of $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right\}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Ph}_{4}\right)(9)(27 \mathrm{mg}, 24 \%)\right.$, m.p. $>239^{\circ} \mathrm{C}$ (dec.). Found: C, $70.5 ; \mathrm{H}, 4.65 ; M$ (mass spectrometry), 1262. $\mathrm{C}_{78} \mathrm{H}_{60} \mathrm{P}_{2} \mathrm{Ru}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, 70.5 ; H, 4.65%; M, 1262. IR (Nujol): $1438 \mathrm{~m}, 1089 \mathrm{w}, 790 \mathrm{w}, 740 \mathrm{w}, 720 \mathrm{w}$, $645 \mathrm{~m} \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 4.69\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 6.4-7.3(\mathrm{~m}, 50 \mathrm{H}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 87.0\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 124.9-134.6(\mathrm{~m}, \mathrm{Ph}) ; 138.3$ [d, J(PC) 37 $\mathrm{Hz}, \mathrm{Ru}-\mathrm{C}] ; \mathrm{Ru}=\mathrm{C}$ not detected. FAB MS: $1262,[M]^{+}, 65 ; 1185,[M-\mathrm{Ph}]^{+}, 0.7 ;$ $1000,\left[M-\mathrm{PPh}_{3}\right]^{+}, 13 ; 833,\left[M-\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 4 ; 738,\left[M-2 \mathrm{PPh}_{3}\right]^{+}, 100$; $429,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$, 70. Further elution of the column afforded a purple fraction which was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}\right)$ to give purple crystals of $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mu-\mathrm{C}_{10} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}(10)(3 \mathrm{mg}, 0.5 \%)$, m.p. $>250^{\circ} \mathrm{C}$ (dec.). Found: M (mass spectrometry), 1363. $\mathrm{C}_{86} \mathrm{H}_{64} \mathrm{P}_{2} \mathrm{Ru}_{2}$ calc.: $M, 1363$. FAB MS: 1363, $[M]^{+}, 1 ; 1101,\left[M-\mathrm{PPh}_{3}\right]^{+}, 0.5 ; 839, \quad\left[M-2 \mathrm{PPh}_{3}\right]^{+}, \quad 3 ; 429$, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 5 ; 391,\left[\mathrm{C}_{7} \mathrm{Ph}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]^{+}, 100$.

Reaction between $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (14) and $\mathrm{AgC} \mathrm{C}_{2} \mathrm{Ph} / \mathrm{AgCl}$ (by M.L. Williams)

A suspension of $14(500 \mathrm{mg}, 0.632 \mathrm{mmol})$ and $\mathrm{AgC}_{2} \mathrm{Ph}(140 \mathrm{mg}, 0.498 \mathrm{mmol})$ in toluene (50 ml) was treated with $\mathrm{AgCl}(90 \mathrm{mg}, 0.627 \mathrm{mmol}$) after 5 min reflux. After 15 min the dark blue suspension was cooled. Work-up as above gave 9 (35 $\mathrm{mg}, 9 \%$) (TLC, FAB MS).

Reaction between $\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{AgPF} F_{6}$

(a) In 2:1 ratio. A suspension of $\mathrm{AgPF}_{6}(80 \mathrm{mg}, 0.32 \mathrm{mmol})$ in toluene (10 ml) was added to a solution of 14 ($500 \mathrm{mg}, 0.632 \mathrm{mmol}$) also in toluene (50 ml). A yellow precipitate of $\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2} \mathrm{Ag}\right]\left[\mathrm{PF}_{6}\right](15)(436 \mathrm{mg}, 75 \%)$ separated immediately. M.p. $>190^{\circ} \mathrm{C}$ (dec.). Found: C, 63.3; H, 4.65; (M+H) (mass spectrometry), 1692. $\mathrm{C}_{98} \mathrm{H}_{80} \mathrm{AgF}_{6} \mathrm{P}_{5} \mathrm{Ru}_{2}$ calc.: $\mathrm{C}, 64.1 ; \mathrm{H}, 4.4 \%$; M, 1691. IR (Nujol): $\nu(\mathrm{C} \equiv \mathrm{C}) 1984 \mathrm{~m}, 1943 \mathrm{~s}$; $\nu(\mathrm{PF}) 839 \mathrm{~s}$ (br); other bands at $1593 \mathrm{~m}, 1570 \mathrm{~m}$, $1481 \mathrm{~s}, 1433 \mathrm{~s}, 1089 \mathrm{~s}, 752 \mathrm{~s}, 737 \mathrm{~s}, 696 \mathrm{vs}, 557 \mathrm{vs} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: δ (acetone- d_{6}) 4.41 (s, $10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$) $7.25(\mathrm{~m}, 70 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ (acetone- d_{6}) $86.2\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$; 91.1 ($\mathrm{s}, \mathrm{C}_{\beta}$); 128.3-138.1 (m, Ph). FAB MS: 1692, $[M+\mathrm{H}]^{+}, 2 ; 901,[M-$ $\left.\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 23 ; 792,\left[M-\mathrm{AgRu}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 16 ; 691$, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, \quad 11 ; 639, \quad\left[M-\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 24 ; 529$, $\left[\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 31 ; 453, \quad\left[\mathrm{Ru}\left(\mathrm{C}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$, 61; 429, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 100$.
(b) In 1:1 ratio. The yellow suspension obtained by adding AgPF_{6} ($33 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ to a solution of $14(100 \mathrm{mg}, 0.126 \mathrm{mmol})$ in toluene (22 ml) was stirred for 10 min , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added. The colour of the solution gradually changed to red-pink and silver was deposited. After 30 min , the solution was filtered through Celite and the filtrate was evaporated to dryness. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and filtration into an excess of $\mathrm{Et}_{2} \mathrm{O}$ gave a pale apricot precipitate of $\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}(16)(93 \mathrm{mg}, 82 \%)$, m.p. $150^{\circ} \mathrm{C}$ (dec.). Found: C, $62.55 ; \mathrm{H}, 4.35 \% ; M$ (mass spectrometry), 1583. $\mathrm{C}_{98} \mathrm{H}_{80} \mathrm{~F}_{12} \mathrm{P}_{6} \mathrm{Ru}_{2}$ calc.: C, 62.8; H, 4.3\%, M, 1583. IR (Nujol): $\nu(\mathrm{C}=\mathrm{C}) 1626 \mathrm{~m}, 1587 \mathrm{~m} ; ~ \nu(\mathrm{PF}) 841 \mathrm{vs}(\mathrm{br}) ;$ other bands at $1437 \mathrm{~s}, 1311 \mathrm{~m}, 1187 \mathrm{~m}, 1160 \mathrm{~m}, 1091 \mathrm{~s}, 744 \mathrm{~s}, 723 \mathrm{~s}, 696 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

Table 2
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Ru} ; \times 10^{4}$ for remaining atoms) for $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}(\mu$ $\mathrm{C}_{8} \mathrm{Ph}_{4}$)(9)

Ru(1)	30407(4)	9732(3)	38350(5)
Ru(2)	12532(4)	36836(3)	38955(5)
P(1)	3819(1)	1320(1)	2228(1)
$\mathrm{P}(2)$	323(1)	3381(1)	5391(2)
C(1)	2261(6)	266(4)	4987(8)
C(2)	2586(6)	-91(4)	4120(8)
C(3)	3627(6)	61(4)	4331(8)
C(4)	3927(7)	502(4)	5326(8)
C(5)	3094(6)	625(4)	5748(8)
C(6)	891(6)	4392(4)	2462(8)
C(7)	1114(6)	4734(4)	3617(7)
C(8)	2076(6)	4720(4)	4153(7)
C(9)	2475(6)	4371(4)	3318(7)
C(10)	1766(6)	4170(4)	2289(7)
C(11)	2982(5)	1921(3)	4317(6)
C(12)	2070(5)	1937(3)	3597(6)
C(13)	1649(5)	2511(3)	3667(6)
C(14)	2153(5)	3042(3)	4459(7)
C(15)	3077(5)	3022(3)	5160(6)
C(16)	3454(5)	2430(3)	5156(6)
C(17)	1832(5)	1276(3)	$3115(6)$
C(18)	859(3)	895(2)	2638(5)
C(19)	772(3)	340(2)	1877(5)
C(20)	-146(3)	-38(2)	1466(5)
C(21)	-976(3)	138(2)	1817(5)
C(22)	-888(3)	693(2)	2578(5)
C(23)	30(3)	1071(2)	2989(5)
C(24)	890(5)	2807(3)	3028(6)
C(25)	299(3)	2570(3)	1834(5)
C(26)	6472(3)	2196(3)	1031(5)
C(27)	118(3)	1971(3)	- 100(5)
C(28)	-811(3)	2120(3)	-428(5)
C(29)	-1184(3)	2494(3)	375(5)
C(30)	-630(3)	2719(3)	1506(5)
C(31)	3666(3)	3621(3)	5842(5)
C(32)	3274(3)	3970(3)	6666(5)
C(33)	3818(3)	4547(3)	7245(5)
C(34)	4755(3)	4776(3)	7002(5)
C(35)	5148(3)	4427(3)	6178(5)
C(36)	4603(3)	3849(3)	5599(5)
C(37)	4317(4)	2348(3)	6077(5)
C(38)	4294(4)	2459(3)	7314(5)
C(39)	5063(4)	2347(3)	8188(5)
C(40)	5855(4)	2124(3)	7825(5)
$\mathrm{C}(41)$	5878(4)	2012(3)	6588(5)
C(42)	$5110(4)$	2124(3)	5714(5)
C 43)	3722(4)	705(3)	970(5)
C(44)	3215(4)	80(3)	1073(5)
C(45)	3158(4)	-401(3)	159(5)
$\mathrm{C}(46)$	3608(4)	-257(3)	-857(5)
C(47)	4115(4)	368(3)	-960(5)
C(48)	4172(4)	850(3)	-46(5)
C(49)	5171(3)	1558(2)	2533(5)

Table 2 (continued)

$C(50)$	$5685(3)$	$1200(2)$	$3357(5)$
$C(51)$	$6703(3)$	$1329(2)$	$3568(5)$
$C(52)$	$7208(3)$	$1816(2)$	$2955(5)$
$C(53)$	$6694(3)$	$2174(2)$	$2130(5)$
$C(54)$	$5676(3)$	$2045(2)$	$1919(5)$
$C(55)$	$3465(4)$	$2026(3)$	$1434(4)$
$C(56)$	$3780(4)$	$2642(3)$	$2014(4)$
$C(57)$	$3549(4)$	$3187(3)$	$1423(4)$
$C(58)$	$3002(4)$	$3116(3)$	$252(4)$
$C(59)$	$2687(4)$	$2499(3)$	$-329(4)$
$C(60)$	$2919(4)$	$1954(3)$	$262(4)$
$C(61)$	$662(4)$	$3805(2)$	$6914(4)$
$C(62)$	$1057(4)$	$4467(2)$	$6992(4)$
$C(63)$	$1252(4)$	$4815(2)$	$8118(4)$
$C(64)$	$1052(4)$	$4501(2)$	$9165(4)$
$C(65)$	$657(4)$	$3839(2)$	$9087(4)$
$C(66)$	$462(4)$	$3491(2)$	$7961(4)$
$C(67)$	$-966(4)$	$3506(3)$	$5058(4)$
$C(68)$	$-1608(4)$	$3363(3)$	$5890(4)$
$C(69)$	$-2579(4)$	$3436(3)$	$5583(4)$
$C(70)$	$-2908(4)$	$3654(3)$	$4445(4)$
$C(71)$	$-2267(4)$	$3798(3)$	$3613(4)$
$C(72)$	$-1296(4)$	$3724(3)$	$3920(4)$
$C(73)$	$202(3)$	$2531(2)$	$5786(5)$
$C(74)$	$1022(3)$	$2307(2)$	$6364(5)$
$C(75)$	$961(3)$	$1652(2)$	$6599(5)$
$C(76)$	$80(3)$	$1220(2)$	$5257(5)$
$C(77)$	$-741(3)$	$1444(2)$	$5679(5)$
$C(78)$	$-680(3)$	$2099(2)$	$5443(5)$
$C(80)$	$3438(20)$	$5882(15)$	$829(8)$
$C l(1)$	$2366(7)$	$6144(4)$	$-246(10)$
$C(2)$	$3900(7)$	$5996(7)$	

NMR: $\delta\left(\right.$ acetone- d_{6}) $5.42\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 5.59\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 7.21$ (m, $70 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right) \mathrm{NMR}: \delta\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{Cr}(\mathrm{acac})_{3}\right] 91.1,95.5\left(2 \times \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 129.0-134.0(\mathrm{~m}, \mathrm{Ph})$; 347.6 (s(br), C ${ }_{\alpha}$). FAB MS: 1729, $\left[M+\mathrm{PF}_{6}\right]^{+}, 1 ; 1583,[M-\mathrm{H}]^{+} \equiv\left[M^{\prime}\right]^{+}, 23 ; 1321$, $\left[M^{\prime}-\mathrm{PPh}_{3}\right]^{+}, 1 ; 1059,\left[M^{\prime}-2 \mathrm{PPh}_{3}\right]^{+}, 2 ; 892,\left[M^{\prime}-\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 7 ; 796$, $\left[M^{\prime}-3 \mathrm{PPh}_{3}\right]^{+}, 6 ; 691,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 20 ; 631,\left[\mathrm{Ru}\left(\mathrm{C}_{4} \mathrm{Ph}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$, 12; 429, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 100$.

Crystallography

Intensity data for 9 and 10 were measured at room temperature on an EnrafNonius CAD4F diffractometer fitted with Mo- K_{α} (graphite monochromatised) radiation, $\lambda=0.7107 \AA$. The $\omega: 2 \theta$ scan technique was employed to measure N_{m} reflections, N_{u} of which were unique and N_{o} were considered observed with $I \geqslant 2.5 \sigma(I)$. Lorentz, polarisation and absorption (analytical procedure) corrections were applied [27]. The structures were each solved from a Patterson synthesis and each was refined by a block-matrix least-squares procedure with shelx 76 [27]. Phenyl groups were refined as hexagonal rigid groups. For 9, the Ru, P and C atoms of the C_{8} moiety and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule were refined anisotropi-

Table 3
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Ru} ; \times 10^{4}$ for remaining atoms) for $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}(\mu$. $\left.\mathrm{C}_{10} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}(10)$

Ru(1)	-1151(11)	-34146(9)	25799(9)
Ru(2)	23295(11)	17173(9)	8923(8)
P (1)	1420(4)	-3026(3)	3667(3)
P (2)	3798(4)	2554(3)	1916(3)
C(1)	- 1975(14)	--4271(12)	2123(16)
C(2)	-1342(18)	-4374(12)	1584(13)
C(3)	-582(16)	-4789(12)	2011(14)
C(4)	-733(16)	-4930(12)	2810(14)
C(5)	-1633(17)	-4644(11)	2893(13)
C(6)	1498(16)	1771(14)	-392(10)
C(7)	2567(16)	2481(11)	-279(10)
C(8)	3449(15)	2107(13)	-35(9)
C(9)	2889 (16)	1128(12)	-60(10)
C(10)	1675(14)	916(13)	-255(9)
C(11)	-444(13)	-2327(10)	2610(10)
C(12)	217(12)	- 1527(10)	2237(9)
C(13)	933(12)	-1731(9)	1802(9)
C(14)	896(12)	- 2600(10)	1863(9)
C(15)	$1539(12)$	-924(11)	1412(10)
C(16)	1239(13)	-248(10)	1607(9)
C(17)	401(12)	-606(10)	2098(9)
C(18)	122(13)	110(11)	2316(9)
C(19)	690(13)	894(10)	1909(9)
C(20)	1497(12)	737(10)	1489(9)
C(21)	693(13)	1803(9)	1795(10)
C(22)	1404(12)	2314(11)	1283(9)
C(23)	1470(14)	3207(11)	1111(11)
C(24)	846(15)	3562(12)	1466(12)
C(25)	180(14)	3054(11)	1971(11)
C(26)	59(13)	2149(10)	2149(10)
C(27)	- 1476(9)	- 2354(7)	2851(5)
C(28)	-2248(9)	-2034(7)	2340(5)
C(29)	-3263(9)	-2139(7)	2542(5)
C(30)	-3506(9)	-2563(7)	3255(5)
C(31)	-2734(9)	-2883(7)	3766(5)
C(32)	-1719(9)	-2779(7)	3564(5)
C(33)	1450(8)	-2967(8)	1390(7)
C(34)	864(8)	-3362(8)	641(7)
C(35)	1357(8)	-3768(8)	237(7)
C(36)	2436(8)	-3778(8)	582(7)
C(37)	3021(8)	-3383(8)	1331(7)
C(38)	2528(8)	-2977(8)	1735(7)
C(39)	2346(7)	-890(7)	918(7)
C(40)	1922(7)	-1158(7)	117(7)
C(41)	2640(7)	-1253(7)	-321(7)
C(42)	3781(7)	-1080(7)	41(7)
C(43)	4204(7)	-812(7)	842(7)
C(44)	3487(7)	-717(7)	1280(7)
C(45)	-664(8)	-3(8)	2845(7)
C(46)	- $389(8)$	-283(8)	3631(7)
C(47)	-1109(8)	-391(8)	4145(7)
C(48)	-2104(8)	-218(8)	3872(7)
C(49)	-2379(8)	62(8)	3086(7)

Table 3 (continued)

C(50)	-1659(8)	170(8)	2572(7)
C(51)	2166(11)	-3808(8)	3951(7)
C(52)	2794(11)	-3824(8)	4729(7)
C(53)	3402(11)	-4390(8)	4919(7)
C(54)	3382(11)	-4942(8)	4330(7)
C(55)	2755(11)	-4926(8)	3552(7)
C(56)	2147(11)	-4360(8)	3362(7)
C(57)	2618(10)	- 1946(6)	3671(7)
C(58)	3711(10)	-1909(6)	3698(7)
C(59)	4590(10)	- 1080(6)	3651(7)
C(60)	4377(10)	-287(6)	3578(7)
C(61)	3284(10)	-325(6)	3552(7)
C(62)	2404(10)	-1154(6)	3599(7)
C(63)	980(10)	-3002(7)	4614(9)
C(64)	1304(10)	- 2232(7)	5074(9)
C(65)	$800(10)$	-2268(7)	5710(9)
C(66)	-29(10)	-3073(7)	5886(9)
C(67)	- 354(10)	-3843(7)	5427(9)
C(68)	151(10)	-3807(7)	4790(9)
C(69)	5130(7)	2396(7)	1968(7)
C(70)	5030(7)	1524(7)	1827(7)
C(71)	6006(7)	1327(7)	1931(7)
C(72)	7082(7)	2002(7)	2177(7)
C(73)	7181(7)	2874(7)	2318(7)
C(74)	6205(7)	3071(7)	2214(7)
C(75)	4283(10)	3784(8)	1828(6)
C(76)	4569(10)	4333 (8)	2493(6)
C(77)	4996(10)	5269(8)	2413(6)
C(78)	5137(10)	5656(8)	1669(6)
C(79)	4851(10)	5107(8)	1004(6)
C(80)	4424(10)	4171(8)	1084(6)
C(81)	3667(9)	2375(8)	2962(9)
C(82)	4397(9)	2050(8)	3517(9)
C(83)	4268(9)	1889(8)	4305(9)
C(84)	3410(9)	2051(8)	4537(9)
C(85)	2680(9)	2375(8)	3982(9)
C(86)	2809(9)	2537(8)	3194(9)

cally; for 10, non-phenyl atoms were refined anisotropically. Hydrogen atoms were not included in the structure factor calculations. A weighting scheme of the form $w=k /\left[\sigma^{2}(F)+g|F|^{2}\right]$ was applied and the refinement continued until convergence in each case. Fractional atomic coordinates are listed in Tables 2 and 3 and the crystallographic numbering schemes used are shown in Figs. 1 and 2 which were drawn with the ORTEP [28] program at 15% probability ellipsoids. Scattering factors for neutral Ru (corrected for f^{\prime} and $f^{\prime \prime}$) were from ref. 29 and those for the remaining atoms were as incorporated in shelx76 [27].

Crystal and refinement data
9: $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2} \mathrm{C}_{8} \mathrm{Ph}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \equiv \mathrm{C}_{78} \mathrm{H}_{60} \mathrm{P}_{2} \mathrm{Ru}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=$ 1346.3, triclinic, space group $P \overline{1}, a=14.108(1), b=20.949(3), c=11.117(2) \AA$, $\alpha=91.51(1), \beta=99.03(1), \gamma=100.14(1)^{\circ}, V=3189(4) \AA^{3}, D_{c}(Z=2)=1.402 \mathrm{~g}$
cm^{-3}. Crystal dimensions $0.16 \times 0.18 \times 0.42 \mathrm{~mm}, N_{\mathrm{m}}=10449, \theta_{\max }=23^{\circ}$, (ranges $\pm h, \pm k,-l), N_{\mathrm{u}}=8874, \mu=6.10 \mathrm{~cm}^{-1}, \mathrm{max} / \mathrm{min}$ transmission factors 0.953 , $0.899, R_{\text {int }}=0.063, N_{\mathrm{o}}=6269, F(000)=1426, R=0.055, R_{\mathrm{w}}=0.058, k=1.0, g=$ 0.0001 .

10: $\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2} \mathrm{C}_{10} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)=\mathrm{C}_{86} \mathrm{H}_{64} \mathrm{P}_{2} \mathrm{Ru}_{2}, \quad M=1361.5$, triclinic, space group $P \overrightarrow{1}, a=13.056(8), b=16.08(1), c=17.219(7) \AA, \alpha=84.85(4), \beta=$ 104.01(4), $\gamma=112.73(6)^{\circ}, V=3235(6) \AA^{3}, D_{c}(Z=2)=1.398 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystal dimensions $0.06 \times 0.26 \times 0.17 \mathrm{~mm}, N_{\mathrm{m}}=7021, \theta_{\max }=20^{\circ}$, (ranges $\pm h, \pm k,-l$), $N_{\mathrm{u}}=6055, \mu=5.21 \mathrm{~cm}^{-1}, \max / \mathrm{min}$ transmission factors $0.968,0.881, R_{\mathrm{int}}=0.039$, $N_{\mathrm{o}}=3600, F(000)=1396, R=0.072, R_{\mathrm{w}}=0.071, k=1.7, g=0.0010$.

Supplementary material available. Tables of bond lengths and angles, thermal parameters, H atom parameters and structure factors may be obtained from ERTT.

Acknowledgements

We thank the Australian Research Council for financial support, and the Australian Government for a Commonwealth Post-graduate Research Scholarship (GAK). Some initial experiments were performed by Dr J.D. Walsh.

References

1 Part XXXV: M.I. Bruce and G.A. Koutsantonis, Aust. J. Chem., 44 (1991) 207.
2 (a) J.L. Davidson, in P.S. Braterman (Ed.), Reactions of Coordinated Ligands, Vol. 1, Plenum, New York, 1986, p. 825; (b) M.J. Winter, in F.R. Hartley and S. Patai (Eds.), The Chemistry of the Metal-Carbon Bond, Vol. 3, Wiley, New York, 1985, p. 259.
3 R.E. Colburn and K.P.C. Vollhardt, J. Am. Chem. Soc., 103 (1981) 6259.
4 M.I. Bruce, G.A. Koutsantonis, E.R.T. Tiekink and B.K. Nicholson, J. Organomet. Chem., 420 (1991) 271.

5 (a) W. Geibel, G. Wilke, R. Goddard, C. Krüger and R. Mynott, J. Organomet. Chem., 102 (1980) 2576; (b) S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.H. Winter and P. Woodward, J. Chem. Soc., Chem. Commun., (1978) 221; J. Chem. Soc., Dalton Trans., (1982) 173; (c) M. Green, N.C. Norman and A.G. Orpen, J. Am. Chem. Soc., 103 (1981) 1269; (d) M.J. Mays, D.W. Prest and P.R. Raithby, J. Chem. Soc., Dalton Trans., (1981) 771.
6 (a) C. Glaser, Ber., 2 (1869) 422; (b) G. Eglinton and W. McCrae, Adv. Org. Chem., 4 (1963) 225; (c) U. Niedballa, in E. Müller (Ed.), Houben-Weyl: Methoden der Organischen Chemie, Vol. 5.2a, Georg-Thieme Verlag, Stuttgart, 1977, p. 925.
7 P. Cadiot and W. Chodkiewicz, in H.G. Viehe (Ed.), Chemistry of Acetylenes, Marcel Dekker, New York, 1969, p. 609.
8 D.G. Sekutowski and G.D. Stucky, I. Am. Chem. Soc., 98 (1976) 1376.
9 N.A. Ustynyuk, V.N. Vinogradova, V.N. Korneva, D.N. Kravtsov, V.G. Andrianov and Yu.T. Struchkov, J. Organomet. Chem., 277 (1984) 285.
10 J. Götzig, H. Otto and H. Werner, J. Organomet. Chem., 287 (1985) 247.
11 L.D. Field, A.V. George and T.W. Hambley, Inorg. Chem., 29 (1990) 4565.
12 A. Hills, D.L. Hughes, M. Jimenez-Tenorio, G.J. Leigh, C.A. McGeary, A.T. Rowley, M. Bravo, C.E. McKenna and M.-C. McKenna, J. Chem. Soc., Chem. Commun., (1991) 522.

13 G. Jia, A.L. Rheingold and D.W. Meek, Organometallics, 8 (1989) 1378.
14 M.I. Bruce, R.C.F. Gardner, J.A.K. Howard, F.G.A. Stone, M. Welling and P. Woodward, J. Chem. Soc., Dalton Trans., (1977) 621.
15 H.F. Klein, H. Beck-Hemetsberger, L. Reitzel, B. Rodenhäuser and G. Cordier, Chem. Ber., 122 (1989) 43.

16 A. Dobson, D.S. Moore, S.D. Robinson, M.B. Hursthouse and L. New, J. Organomet. Chem., 177 (1979) C8; Polyhedron, 4 (1985) 1119.

17 (a) O.M. Abu Salah and M.I. Bruce, Aust. J. Chem., 29 (1976) 531; (b) O.M. Abu Salah and M.I. Bruce, Aust. J. Chem., 30 (1977) 2639; (c) O.M. Abu Salah, M.I. Bruce and A.D. Redhouse, J. Chem. Soc., Chem. Commun., (1974) 855; (d) O.M. Abu Salah and M.I. Bruce, J. Chem. Soc., Dalton Trans., (1974) 2302.
18 O.M. Abu Salah and M.I. Bruce, J. Chem. Soc., Dalton Trans., (1975) 2311.
19 M.I. Bruce, T.W. Hambley, M.R. Snow and A.G. Swincer, Organometallics, 4 (1985) 501.
20 M. Crocker, M. Green, A.G. Orpen, H.-P. Neumann and C.J. Schaverien, J. Chem. Soc., Chem. Commun., (1984) 1351.
21 M.O. Albers, D.J.A. de Waal, D.C. Liles, D.J. Robinson, E. Singleton and M.B. Wiege, J. Chem. Soc., Chem. Commun., (1986) 1681.
22 R.S. Iyer and J.P. Selegue, J. Am. Chem. Soc., 109 (1987) 910.
23 G.A. Carriedo, D. Miguel, V. Riera and X. Solans, J. Chem. Soc., Dalton Trans., (1987) 2867.
24 M.I. Bruce, M.P. Cifuentes, M.R. Snow and E.R.T. Tiekink, J. Organomet. Chem., 359 (1989) 379.
25 R.L. Beddoes, C. Bitcon, A. Ricalton and M. W. Whiteley, J. Organomet. Chem., 367 (1989) C21.
26 M.I. Bruce, C. Hameister, A.G. Swincer and R.C. Wallis, Inorg. Synth., 21 (1982) 78.
27 G.M. Sheldrick, shelx76. Program for Crystal Structure Determination, University of Cambridge, England, 1976.
28 C.K. Johnson, ortepiI, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
29 J.A. Ibers and W.C. Hamilton (Eds.), International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974, pp. 99, 154.

[^0]: * For Part XXXV, see ref. 1.

