Journal of Organometallic Chemistry, 420 (1991) 253–269 Elsevier Sequoia S.A., Lausanne JOM 22142

Cyclopentadienyl-ruthenium and -osmium chemistry

XXXVI *. Oligomerisation of phenylacetylide residues on ruthenium. Crystal structures of $\{Ru(PPh_3)(\eta - C_5H_5)\}_2$ - $(\mu - C_8Ph_4)$ and $\{Ru(PPh_3)(\eta - C_5H_5)\}_2$ $\{\mu - C_{10}Ph_4(C_6H_4)\}$

Michael I. Bruce, George A. Koutsantonis, Michael J. Liddell and Edward R.T. Tiekink

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

(Received June 24th, 1991)

Abstract

Reactions between RuCl(PPh₃)₂(η -C₅H₅) and AgC₂Ph afforded a deep blue binuclear complex, shown by X-ray crystallography to contain a planar tricyclic diruthenadicyclobutadieno[*a,c*]benzene system, formed by tetramerisation of phenylacetylide residues at the ruthenium centres. A deep purple complex, isolated in small yield from the same reaction, was similarly shown to contain a diruthenapentacyclic system, formed by an unprecedented oligomerisation of five phenylacetylide units. Related reactions have given [{Ru(C₂Ph)(PPh₃)₂(η -C₅H₅)}₂Ag][PF₆] and the divinylidene [{Ru(PPh₃)₂(η -C₅H₅)}₂(μ -C₄Ph₂)][PF₆]₂.

Introduction

Transition metal-induced oligomerisation reactions of alkynes have been known for many years and have proved to be a continuing source of exotic complexes containing ligands formed from the alkynes, sometimes with incorporation of other groups present on the metal, such as CO or isocyanides [2]. Development of many of these reactions into sources of organic materials often followed, and sometimes preceded, an understanding of the mechanisms of the metal-based reactions. Few of these reactions resulted in combination of more than three molecules of alkyne, although the tetramerisation to cyclooctatetraenes is an old example, only relatively recently understood [3]. We have described well-characterised tri- and tetra-mers of $C_2(CO_2Me)_2$ formed at an $Ru(\eta-C_5H_5)$ centre [4], while related reactions at dinuclear centres have also been reported [5].

The oxidative coupling of acetylide groups, usually using a copper(I) intermediate, is a well established synthetic method, either as the Glaser reaction [6] or

^{*} For Part XXXV, see ref. 1.

later, the Cadiot-Chodkiewicz modification [7]. There is an increasing number of transition metal-centred couplings of acetylide fragments, which have also given unusual unsaturated C₄ ligands. The reaction between NaC₂Ph and TiCl₂(η - $C_5H_4Me)_2$ gave complex 1 containing two Ti(η -C₅H₄Me)₂ moieties attached to 1,4-diphenyl-1,3-butadiyne [8]; the same diyne was found in 2, which was formed when Mo(C₂Ph)(CO)₃(η -C₅H₅) was heated [9]. Oxidative coupling of two PhC₂ ligands was observed on osmium, the reaction between cis-Os(C₂Ph)₂(PMe₃)₄ with AgPF₆ affording Os(η^3 -PhC=CC=CHPh)(PMe₃)₄ (3) [10]. Similar products have been obtained from reactions between 1-alkynes and $FeX_2(dmpe)_2 (X_2 = Cl_2 [11],$ $[H(H_2)]^+$ [12]) or RuH₄(cyttp) (cyttp = PPh{(CH₂)₃PCy₂) [13]. Related reactions are also suggested as an alternative explanation for the formation of the cumulene derivative 4 from HC_2CF_3 and a ruthenium precursor [14]. Nickel acetylide complexes have been found to undergo thermally induced rearrangements in which three acetylide residues have combined [15]. Thus, oxidative addition of ClC₂SiMe₃ to Ni⁰ complexes gave NiCl(C_2 SiMe₃)(PMe₃)₂, which, after halide exchange, afforded NiX{C(C_2 SiMe₃)=C(SiMe₃)(C_2 SiMe₃))(PMe₃)₂ (5) (Scheme 1) on heating in the solid state. Interestingly, substitution of halide by $LiC_2^{t}Bu$ gave trans-Ni(C'Bu){C(C₂SiMe₃)=C(SiMe₃)(C₂SiMe₃))(PMe₃)₂ (6), which under CO reductively eliminated the unusual olefin $(Me_3Si)(Me_3SiC_2)C=C(C_2^{t}Bu)(C_2SiMe_3)$ (7) by coupling of sp and sp^2 carbons. Simple coupling of acetylide and vinyl ligands has been known since 1977 when vinylacetylide ligands were obtained from $MX(O_2CCF_3)(CO)(PPh_3)_2$ (M = Ru, Os; X = H or CF_3CO_2) and phenylacetylene, possibly by reaction of $M(C_2Ph)(O_2CCF_3)(CO)(PPh_3)_2$ with more HC_2Ph [16]; these complexes were also obtained from the hydride and PhC_2C_2Ph . However, to our knowledge there are no examples of reactions in which more than three acetylide moieties have been oligomerised at a transition metal centre.

Scheme 1

255

Several years ago, we described the reactions of copper(I) acetylides with a variety of transition metal halide complexes [17]. Among these were reactions with RuCl(PPh₃)₂(η -C₅H₅) which gave the first examples of η^2 -alkyne-copper(I) complexes 8, subsequently obtained by direct reactions between the acetylides and copper(I) halides [18]. We have now investigated similar reactions of silver(I) phenylacetylide and found that these take a completely different course to afford unusual dimetalla-polycyclic systems which form the subject of this paper.

Results and discussion

The reaction between AgC_2Ph and $RuCl(PPh_3)_2(\eta-C_5H_5)$ in refluxing toluene gave a dark coloured solution over a silver mirror. Chromatographic separation afforded several products, of which dark blue 9 and dark purple 10 have been crystallographically characterised. The best yields of 9 were obtained by quenching the reaction when spot TLC analysis showed that all the chloro complex had been consumed. Continued heating of 9 in refluxing toluene resulted in complete decomposition after 30 min, as shown independently; the products were not identified. Complex 10 was always obtained as a minor product from the synthesis of 9.

The molecular structure of **9** is shown in Fig. 1 and important bond distances are collected in Table 1. Two Ru(PPh₃)(η -C₅H₅) moieties are bridged by a C₈Ph₄ ligand, being attached to it by Ru-C single bonds from the central six-membered ring [Ru(1)-C(11) 2.062(7), Ru(2)-C(14) 2.051(7) Å] and by Ru-C carbene interactions from the side chains [Ru(1)-C(17) 1.982(7), Ru(2)-C(24) 1.997(7) Å]. The small bite of the ligand results in severe distortions within the four-membered RuC₃ rings as shown by the inter-ring angles at Ru(1) and Ru(2) of 64.8(3)°, which results in angles of between 96-100° at the carbon atoms. The Ru₂C₈ skeleton forms a planar 4/6/4 tricyclic unit which can be described as a diruthenadicyclobutadiene[*a*,*c*]benzene. The Ru(PPh₃)(η -C₅H₅) units have conventional geometries, each metal having approximately octahedral coordination, with Ru-C(cp) 2.26 Å (av.), Ru-P 2.309 Å (av.).

The spectroscopic properties of 9 can be interpreted with the aid of the molecular structure. The ¹³C NMR spectrum contains resonances at δ 87.0 and 138.3 for the C₅H₅ and σ -carbons, respectively; all other carbons resonate as a series of multiplets between δ 125–134.5. The resonances of the carbenic carbons were not observed, perhaps because of slow decomposition in solution. An exhaustive search of the ¹H NMR spectrum failed to reveal any hydrogens other than those of the phenyl (δ 6.4–7.3) and C₅H₅ groups (δ 4.7). The FAB mass spectrum contains a molecular ion centred on m/z 1262, which fragments mainly by loss of

Ph, PPh₃ and Ru(PPh₃)(C₅H₅) groups; the usual strong ion at m/z 429 confirms the presence of the Ru(PPh₃)(η -C₅H₅) moiety.

The purple complex 10 was identified as containing one more C_2 Ph group than 9 by mass spectrometry, having a molecular ion at m/z 1363; the only other prominent ions are $[Ru(PPh_3)(C_5H_5)]^+$ and the organic fragment $[C_7Ph_3(C_6H_4)]^+$ at m/z 391. The X-ray structure (Fig. 2) shows that this complex also contains two

Fig. 1. Molecular structure of $(Ru(PPh_3)(\eta-C_5H_5))_2(\mu-C_8Ph_4)$ (9) showing atom numbering scheme. For reasons of clarity only the *ipso* C atoms of the PPh₃ groups are shown.

	9	10	
Ru(1)-P(1)	2.308(2)	2.310(5)	
Ru(2)-P(2)	2.310(2)	2.321(5)	
$Ru(1)-C(\sigma)$	2.062(7)	2.04(1)	
$Ru(2)-C(\sigma)$	2.051(7)	2.06(2)	
Ru(1)-C(carb)	1.982(7)	1.96(2)	
Ru(2)-C(carb)	1.997(7)	1.91(2)	
Ru(1)-C(cp)	2.239-2.270(9)	2.26-2.33(2)	
(av.)	2.257	2.29	
Ru(2)-C(cp)	2.232-2.269(8)	2.23-2.35(2)	
(av.)	2.253	2.29	
C(11)–C(12)	1.411(9)	1.44(2)	
C(11)-C(16)	1.40(1)		
C(12)-C(13)	1.44(1)	1.47(2)	
C(12)-C(17)	1.44(1)	1.41(2)	
C(13)-C(14)	1.41(1)	1.37(2)	
C(13)-C(15)		1.44(2)	
C(13)-C(24)	1.432(9)		
C(14)-C(15)	1.419(9)		
C(15)-C(16)	1.43(1)	1.38(2)	
C(16)-C(17)		1.45(2)	
C(16)C(20)		1.49(2)	
C(17)–C(18)		1.49(2)	
C(18)-C(19)		1.42(2)	
C(19)–C(20)		1.52(2)	
C(19)–C(21)		1.46(2)	
C(21)-C(22)		1.41(2)	
$P(1)-Ru(1)-C(\sigma)$	90.1(2)	90.3(4)	
$P(2)-Ru(2)-C(\sigma)$	90.9(2)	83.9(4)	
P(1)-Ru(1)-C(carb)	92.2(2)	95.8(5)	
P(2)-Ru(2)-C(carb)	93.1(2)	100.4(5)	
$C(\sigma)-Ru(1)-C(carb)$	64.8(3)	80.6(6)	
$C(\sigma)-Ru(2)-C(carb)$	64.8(3)	80.8(6)	

Table 1 Selected bond distances (Å) and angles (deg.) in 9 and 10

In 9, $C(\sigma)$ are C(11), C(14), C(carb) are C(17), C(24); in 10, $C(\sigma)$ are C(14), C(22), C(carb) are C(11), C(20).

Ru(PPh₃)(η -C₅H₅) groups attached via Ru–C single [Ru(1)–C(14) 2.04(1), Ru(2)–C(22), 2.06(2) Å] and multiple bonds [Ru(1)–C(11) 1.96(2), Ru(2)–C(20) 1.91(2) Å] to a polycyclic ligand formed from five phenylacetylide residues. The central feature is a pentalene fused to a ruthenacyclopentadiene ring; in the latter, localised multiple bonds are found between Ru(1)–C(11) and C(13)–C(14) [1.44(2) Å], the metal also being σ -bonded to C(14). The second ruthenium is multiply-bonded to C(20) of the pentalene and metallates one of the phenyl rings at C(22). Overall, the pentacyclic 5/5/5/6 system is planar; the maximum deviation from the mean plane defined by Ru(1)Ru(2)C(11)–C(26) is 0.18 Å for C(23); alternatively, Ru(1) and Ru(2) are 0.016 and 0.112 Å out of the C(11)–C(26) plane.

The ring system combines the structural features of a methylenepentalene fused to a metallacyclopentadiene; it is the first example of a pentalene-metal complex which does not involve stabilisation of this system by π -complexation to the metal.

Fig. 2. Molecular structure of $\{Ru(PPh_3)(\eta - C_5H_5)\}_2\{\mu - C_{10}Ph_4(C_6H_4)\}\)$ (10) showing atom numbering scheme. For reasons of clarity only the *ipso* C atoms of the PPh₃ groups are shown.

It is of interest that the conjugated system is fixed; although the precision of the X-ray determination scarcely enables C-C single and C=C double bonds to be distinguished, the different Ru-C distances are well established.

The Ru–C multiple bonds found in 9 and 10 are further examples to add to the growing number of such features found in other ruthenium complexes recently described. These include the $\eta^{3}(4e)$ -butadienyl ligands found in Ru{ η^{3} -C(CN)₂CPhC=C(CN)₂}(PPh₃)(η -C₅H₅) (11) and related complexes [19], the η^{4} (5e)-butadienyl ligand in Ru(η^{4} -CPhCPhCPhCPhCHPh)(η -C₅H₅) (12) [20] and the metallacyclopentatriene ring in RuBr(η^{2} -CPhCHCHCPh)(η -C₅H₅) (13) [21].

The routes by which these unusual complexes are formed are presently matters of speculation. Qualitative experiments have established the formation of complexes analogous to 9 in reactions involving $AgC_2(C_6H_4X_{-P})$ (X = H, Me) and $RuCl{P(C_6H_4R_{-P})_3}_2(\eta$ -C₅H₄R') (R, R' = H, Me); other silver(I) acetylides reacted to give $Ru(C_2R)(PPh_3)_2(\eta$ -C₅H₅). The intermediacy of species such as, or related to, PhC_2C_2Ph or [{Ru(PPh_3)_2(\eta-C₅H₅)}₂(μ -C₄Ph_2)]²⁺, formed by oxidative coupling of either the C₂Ph fragments or the ruthenium σ -phenylacetylide, is supported by the deposition of silver metal during the reactions.

On paper, reaction schemes can be described which allow construction of these complexes with surprisingly little rearrangement. Scheme 2 is an example. Initial formation of the σ -phenylacetylide complex is followed by oxidative coupling to form the divinylidene complex. Related complexes have been described [22]. Further coupling with 1,4-diphenylbuta-1,3-diyne, also formed by oxidative coup-

(13)

Scheme 2

Scheme 3

ling of phenylacetylide residues, could lead to 9 in the manner shown. However, we have not been successful in making 9 from either of these precursors; these processes may be concerted.

In the case of 10, a more tentative scheme is illustrated as Scheme 3. A concerted rearrangement of two molecules of 1,4-diphenylbuta-1,3-diyne with the σ -phenylacetylide and a second ruthenium centre, followed by a conventional cyclometallation reaction, is required to generate 10. Of interest is the attachment of Ru(1) to two carbons bearing phenyl groups, indicating that the σ -phenylacetylide complex is unlikely to be directly involved.

Some related reactions

Addition of AgPF₆ to two equivalents of Ru(C₂Ph)(PPh₃)₂(η -C₅H₅) (14) in toluene at 0 °C resulted in the immediate precipitation of [{Ru(C₂Ph)(PPh₃)₂(η -C₅H₅)}₂Ag][PF₆] (15) in quantitative yield. This air-stable yellow complex decomposes on attempted purification by chromatography on silica, and was identified from its spectroscopic and analytical properties. In the IR spectrum of 15, the ν (C=C) modes are found at 1984 and 1943 cm⁻¹, compared with 2068 cm⁻¹ in 14; there is also the strong ν (PF) band associated with the counterion. The NMR spectra contained the anticipated resonances from the C₅H₅ and Ph groups, and a ¹³C resonance at δ 91.1 is assigned to C_{β}. The FAB mass spectrum contained a parent ion at m/z 1692, which fragmented with competitive loss of Ag, PPh₃ and Ru(C₂Ph)(PPh₃)₂(C₅H₅). An ion at m/z 529 loses C₆H₄, then C₂, to give the usual base peak at m/z 429, [Ru(PPh₃)(C₅H₅)]⁺.

These data are accommodated by structure 15 for this complex, which is related to that found for $[{Mn(C_2^tBu)(CO)_3(dppe)}_2Cu][PF_6]$ as a representative of similar complexes formed by Cu, Ag and Au [23]. We have also described the closely related derivative $[{Ru(C_2Ph)[P(OMe)_3]_2(\eta-C_5H_5)}_2Cu][PF_6]$, which has a similar IR spectrum [24].

A similar reaction between equimolar amounts of AgC_2Ph and 14 also resulted in the formation of 15. However, if CH_2Cl_2 was then added, the precipitate dissolved and the colour of the solution rapidly darkened to red. Work-up gave a pale apricot powder identified as $[{Ru(PPh_3)_2(\eta-C_5H_5)}_2(\mu-C_4Ph_2)][PF_6]_2$ (16). In the IR spectrum, broad medium intensity bands at 1626 and 1587 cm⁻¹ are characteristic of the vinylidene ν (C=C); the strong band at 840 cm⁻¹ is ν (PF). In the ¹H NMR spectrum, two equal intensity resonances at δ 5.42 and 5.59 were assigned to inequivalent C_5H_5 resonances. Similarly, two peaks at δ 91.1 and 95.5 in the ¹³C NMR spectrum were assigned to the C_5H_5 carbons, while a broad, low intensity signal at δ 347.6 is assigned to C_{α} . The highest mass ion in the FAB mass spectrum was at m/z 1729, assigned to $[M + PF_6]^+$; an ion at m/z 1583 corresponds to $[M - H]^+$, and $[Ru(C_4Ph_2)(PPh_3)(C_5H_5)]^+$ occurs at m/z 631. Complex 16 has the divinylidene structure illustrated, and is analogous to the crystallographically characterised $[\{Fe(dppe)(\eta - C_5H_5)\}_2(\mu - C_4Me_2)][BF_4]_2$, which was obtained by oxidation of $[Fe(CCMe_2)(dppe)(\eta - C_5H_5)]^+$ [22]. More recently, the molybdenum complexes $[\{Mo(dppe)(\eta - C_7H_7)\}_2(\mu - C_4R_2)]^+$ have been described [25].

Work continues to uncover further and possibly more extensive systems available from metal-induced oxidative coupling of acetylide residues.

Experimental

General conditions

All reactions were carried out under dry, high purity nitrogen using standard Schlenk techniques. Solvents were dried and distilled before use. Elemental analyses were by the Canadian Microanalytical Service, Delta, B.C., Canada V4G 1G7. TLC was carried out on glass plates $(20 \times 20 \text{ cm})$ coated with silica gel (Merck 60 GF₂₅₄, 0.5 mm thick).

Reagents. Complex 1 was prepared as previously described [8]. $Me_3NO \cdot 2H_2O$ (Aldrich) was dehydrated by sublimation (100 ° C/0.1 mmHg).

Instrumentation. IR: Perkin–Elmer 1700X FT IR; 683 double beam, NaCl optics; NMR: Bruker CXP300 (¹H NMR at 300.13 MHz, ¹³C NMR at 75.47 MHz). Spectra recorded in non-deuterated solvents used an external concentric tube containing D_2O for field lock. FAB MS: VG ZAB 2HF (FAB MS, using 3-nitrobenzyl alcohol as matrix, exciting gas Ar, FAB gun voltage 7.5 kV, current 1 mA, accelerating potential 7 kV).

Starting materials. Published methods were used to prepare $RuCl(PPh_3)_2(\eta-C_5H_5)$ and $Ru(C_2Ph)(PPh_3)_2(\eta-C_5H_5)$ [26]. Silver phenylacetylide was obtained by addition of HC_2Ph in EtOH to an aqueous ammoniacal solution of $AgNO_3$; the product was filtered off, washed with EtOH and dried. $AgPF_6$ was used as received (Pennwalt Chemicals, Tulsa, OK).

Reaction between $RuCl(PPh_3)_2(\eta - C_5H_5)$ and AgC_2Ph

A suspension of RuCl(PPh₃)₂(η -C₅H₅) (127 mg, 0.175 mmol) and AgC₂Ph (130 mg, 0.622 mmol) was heated in refluxing toluene (30 ml) for 1 h. The mixture was

filtered, the filtrate was evaporated to dryness, and the residue was chromatographed (Florisil; 3×20 cm). Elution (acetone/light petroleum, 1/9) gave a blue-green fraction which was crystallised ($CH_2Cl_2/EtOH$) to give dark blue crystals of {Ru(PPh₃)(η -C₅H₅}₂(μ -C₈Ph₄) (9) (27 mg, 24%), m.p. > 239 °C (dec.). Found: C, 70.5; H, 4.65; *M* (mass spectrometry), 1262. $C_{78}H_{60}P_{7}Ru_{2} \cdot CH_{2}Cl_{2}$ calc.: C, 70.5; H, 4.65%; M, 1262. IR (Nujol): 1438m, 1089w, 790w, 740w, 720w, 645m cm⁻¹. ¹H NMR: δ (CDCl₃) 4.69 (s, 10H, C₅H₅); 6.4–7.3 (m, 50H, Ph). $^{13}C(^{1}H)$ NMR: $\delta(CDCl_{3})$ 87.0 (s, C₅H₅); 124.9–134.6 (m, Ph); 138.3 [d, J(PC) 37 Hz, Ru-C]; Ru=C not detected. FAB MS: 1262, $[M]^+$, 65; 1185, $[M - Ph]^+$, 0.7; 1000, $[M - PPh_3]^+$, 13; 833, $[M - Ru(PPh_3)(C_5H_5)]^+$, 4; 738, $[M - 2PPh_3]^+$, 100; 429, $[Ru(PPh_3)(C_5H_5)]^+$, 70. Further elution of the column afforded a purple fraction which was crystallised (CH₂Cl₂/EtOH) to give purple crystals of $\{\operatorname{Ru}(\operatorname{PPh}_3)(\eta - C_5H_5)\}_2\{\mu - C_{10}\operatorname{Ph}_4(C_6H_4)\}\$ (10) (3 mg, 0.5%), m.p. > 250 °C (dec.). Found: *M* (mass spectrometry), 1363. C₈₆H₆₄P₂Ru₂ calc.: *M*, 1363. FAB MS: 1363, $[M]^+$, 1; 1101, $[M - PPh_3]^+$, 0.5; 839, $[M - 2PPh_3]^+$, 3; 429, $[Ru(PPh_3)(C_5H_5)]^+$, 5; 391, $[C_7Ph_3(C_6H_4)]^+$, 100.

Reaction between $Ru(C_2Ph)(PPh_3)_2(\eta-C_5H_5)$ (14) and $AgC_2Ph/AgCl$ (by M.L. Williams)

A suspension of 14 (500 mg, 0.632 mmol) and AgC_2Ph (140 mg, 0.498 mmol) in toluene (50 ml) was treated with AgCl (90 mg, 0.627 mmol) after 5 min reflux. After 15 min the dark blue suspension was cooled. Work-up as above gave 9 (35 mg, 9%) (TLC, FAB MS).

Reaction between $Ru(C_2Ph)(PPh_3)_2(\eta-C_5H_5)$ and $AgPF_6$

(a) In 2:1 ratio. A suspension of AgPF₆ (80 mg, 0.32 mmol) in toluene (10 ml) was added to a solution of 14 (500 mg, 0.632 mmol) also in toluene (50 ml). A yellow precipitate of $[\{Ru(C_2Ph)(PPh_3)_2(\eta-C_5H_5)\}_2Ag][PF_6]$ (15) (436 mg, 75%) separated immediately. M.p. > 190 °C (dec.). Found: C, 63.3; H, 4.65; (*M* + H) (mass spectrometry), 1692. $C_{98}H_{80}AgF_6P_5Ru_2$ calc.: C, 64.1; H, 4.4%; *M*, 1691. IR (Nujol): $\nu(C=C)$ 1984m, 1943s; $\nu(PF)$ 839s (br); other bands at 1593m, 1570m, 1481s, 1433s, 1089s, 752s, 737s, 696vs, 557vs cm⁻¹. ¹H NMR: $\delta(acetone-d_6)$ 4.41 (s, 10H, C_5H_5); 7.25 (m, 70H, Ph). ¹³C{¹H} NMR: $\delta(acetone-d_6)$ 86.2 (s, C_5H_5); 91.1 (s, C_{β}); 128.3–138.1 (m, Ph). FAB MS: 1692, $[M + H]^+$, 2; 901, $[M - Ru(C_2Ph)(PPh_3)_2(C_5H_5)]^+$, 11; 639, $[M - Ru(C_2Ph)(PPh_3)_2(C_5H_5)]^+$, 16; 691, $[Ru(PPh_3)_2(C_5H_5)]^+$, 11; 639, $[M - Ru(C_2Ph)(PPh_3)_3(C_5H_5)]^+$, 24; 529, $[Ru(C_2C_6H_4)(PPh_3)(C_5H_5)]^+$, 31; 453, $[Ru(C_2)(PPh_3)(C_5H_5)]^+$, 61; 429, $[Ru(PPh_3)(C_5H_5)]^+$, 100.

(b) In 1:1 ratio. The yellow suspension obtained by adding AgPF₆ (33 mg, 0.13 mmol) to a solution of 14 (100 mg, 0.126 mmol) in toluene (22 ml) was stirred for 10 min, and CH₂Cl₂ (10 ml) was added. The colour of the solution gradually changed to red-pink and silver was deposited. After 30 min, the solution was filtered through Celite and the filtrate was evaporated to dryness. Extraction with CH₂Cl₂ (5 ml) and filtration into an excess of Et₂O gave a pale apricot precipitate of [{Ru(PPh₃)₂(η -C₅H₅)}₂(μ -C₄Ph₂)][PF₆]₂ (16) (93 mg, 82%), m.p. 150 °C (dec.). Found: C, 62.55; H, 4.35%; *M* (mass spectrometry), 1583. C₉₈H₈₀F₁₂P₆Ru₂ calc.: C, 62.8; H, 4.3%, *M*, 1583. IR (Nujol): ν (C=C) 1626m, 1587m; ν (PF) 841vs(br); other bands at 1437s, 1311m, 1187m, 1160m, 1091s, 744s, 723s, 696s cm⁻¹. ¹H

264

-	
Fractional atomic coordinates ($\times 10^{5}$ for Ru; $\times 10^{5}$) ⁴ for remaining atoms) for $\{Ru(PPh_3)(\eta - C_5H_5)\}_2(\mu - (\mu - C_5H_5))_2(\mu - (\mu -$
$C_8 Ph_4$ (9)	

Ru(1) 30407(4) 9732(3) 38550(5) Ru(2) 12532(4) 36836(3) 38955(5) P(1) 3819(1) 1520(1) 2228(1) P(2) 322(1) 3381(1) 5391(2) C(1) 2261(6) 266(4) 4987(8) C(2) 2586(6) -91(4) 4120(8) C(3) 3627(6) 61(4) 4331(8) C(4) 3927(7) 502(4) 5748(8) C(5) 3094(6) 625(4) 5748(8) C(6) 891(6) 4392(4) 2462(8) C(7) 1114(6) 4734(4) 3617(7) C(8) 2076(6) 4770(4) 2289(7) C(10) 1766(6) 4170(4) 2289(7) C(11) 298(2) 1937(3) 3667(6) C(12) 2070(5) 1937(3) 3667(6) C(14) 215(5) 3042(3) 4459(7) C(15) 3077(5) 3022(3) 5160(6) C(14) 215(5) 2					
Ru(2)12532(4)36836(3)38955(5)P(1)3819(1)1320(1)2228(1)P(2)323(1)3381(1)5391(2)C(1)2261(6)266(4)4987(6)C(2)258(6) $-$ 91(4)4120(8)C(3)3527(6)61(4)4331(8)C(4)3927(7)502(4)5326(8)C(5)3094(6)625(4)5748(8)C(6)891(6)4392(4)2462(8)C(7)114(6)4734(4)3617(7)C(8)2076(6)4720(4)4153(7)C(9)2475(6)4371(4)318(7)C(10)1766(6)4170(4)2289(7)C(11)2982(5)1921(3)4317(6)C(12)2070(5)1937(3)3597(6)C(13)1649(5)2511(3)3667(6)C(14)2153(5)3042(3)4459(7)C(15)3077(5)3022(3)5150(6)C(17)1832(5)1276(3)3115(6)C(18)859(3)895(2)2338(5)C(19)772(3)340(2)1877(5)C(20)-118(3)1071(2)2989(5)C(21) $-976(3)$ 138(2)1817(5)C(22) $-888(3)$ 693(2)2578(5)C(24)890(5)2207(3)1834(5)C(25)29(9)2570(3)1834(5)C(26)6472(3)2196(3)1031(5)C(27)118(3)4477(3)6666(5)C(30) $-63(3)$ 2719(3)1566(6)	Ru(1)	30407(4)	9732(3)	38350(5)	
P(1) $3819(1)$ $1320(1)$ $2228(1)$ P(2) $323(1)$ $3381(1)$ $5391(2)$ C(1) $2261(6)$ $266(4)$ $49878)$ C(2) $2286(6)$ $-91(4)$ $4120(6)$ C(3) $3627(6)$ $61(4)$ $4331(8)$ C(4) $3927(7)$ $502(4)$ $5326(8)$ C(5) $3094(6)$ $625(4)$ $5748(8)$ C(6) $891(6)$ $4792(4)$ $2462(8)$ C(7) $1114(6)$ $4734(4)$ $3617(7)$ C(8) $2076(6)$ $4770(4)$ $2289(7)$ C(10) $1766(6)$ $4170(4)$ $2289(7)$ C(11) $2982(5)$ $192(13)$ $4317(6)$ C(12) $2070(5)$ $1937(3)$ $3597(6)$ C(13) $1649(5)$ $2511(3)$ $3667(6)$ C(14) $2153(5)$ $3042(3)$ $4459(7)$ C(15) $3077(5)$ $3022(3)$ $5160(6)$ C(17) $1832(5)$ $1276(3)$ $3115(6)$ C(18) $859(3)$ $895(2)$ $2538(5)$ C(19) $772(3)$ $340(2)$ $1877(5)$ C(20) $-146(3)$ $-38(2)$ $1466(5)$ C(21) $-976(3)$ $138(2)$ $187(5)$ C(22) $-888(3)$ $693(2)$ $2578(5)$ C(23) $303(3)$ $1071(2)$ $2989(5)$ C(24) $890(5)$ $2207(3)$ $1384(5)$ C(25) $299(3)$ $2570(3)$ $1834(5)$ C(26) $6472(3)$ $2196(3)$ $1031(5)$ C(27) $118(3)$ $2494(3)$ $375(5)$	Ru(2)	12532(4)	36836(3)	38955(5)	
P(2) $323(1)$ $338(11)$ $5391(2)$ C(1) $2261(6)$ $266(4)$ $4987(8)$ C(2) $258(6)$ $-91(4)$ $4120(8)$ C(3) $3627(6)$ $61(4)$ $4331(8)$ C(4) $3927(7)$ $502(4)$ $5326(8)$ C(5) $3094(6)$ $625(4)$ $5748(8)$ C(7) $114(6)$ $4734(4)$ $3617(7)$ C(8) $2076(6)$ $4720(4)$ $4153(7)$ C(10) $1766(6)$ $4170(4)$ $2289(7)$ C(11) $2982(5)$ $192(13)$ $4317(6)$ C(12) $2076(5)$ $1937(3)$ $3597(6)$ C(13) $1649(5)$ $2511(3)$ $3667(6)$ C(14) $2153(5)$ $3042(3)$ $4459(7)$ C(15) $307(5)$ $3022(3)$ $5150(6)$ C(16) $3454(5)$ $2430(3)$ $5156(6)$ C(17) $1833(5)$ $1276(3)$ $31156(6)$ C(18) $859(3)$ $895(2)$ $2638(5)$ C(20) $-14(3)$ $-38(2)$ $1466(5)$	P(1)	3819(1)	1320(1)	2228(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)	323(1)	3381(1)	5391(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	2261(6)	266(4)	4987(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	2586(6)	-91(4)	4120(8)	
$\begin{array}{ccccc} (4) & 3927(7) & 502(4) & 5326(8) \\ C(5) & 3094(6) & 625(4) & 5748(8) \\ C(6) & 891(6) & 4734(4) & 3617(7) \\ C(8) & 2076(6) & 4770(4) & 4153(7) \\ C(9) & 2475(6) & 4771(4) & 318(7) \\ C(10) & 1766(6) & 4170(4) & 2289(7) \\ C(11) & 2982(5) & 1921(3) & 4317(6) \\ C(12) & 2070(5) & 1937(3) & 3597(6) \\ C(13) & 1649(5) & 2511(3) & 3667(6) \\ C(14) & 2153(5) & 3042(3) & 4459(7) \\ C(15) & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & -38(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1877(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1508(5) \\ C(31) & 3666(3) & 3449(3) & 579(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(5) & 4747(3) & 7245(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3449(3) & 5599(5) \\ C(37) & 317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2494(3) & 375(5) \\ C(39) & 5063(4) & 2147(3) & 6178(5) \\ C(31) & 368(4) & -257(3) & -857(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 580(3) & -960(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ C(40) & 508(5) & -17(5) & 17(5) \\ C(40) & 508(5) & -17(5) & -17(5) \\ C(40) & 508(5) & -17(5) & -1$	C(3)	3627(6)	61(4)	4331(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	3927(7)	502(4)	5326(8)	
C66891(6)4392(4)2462(8)C(7)1114(6)4734(4)3617(7)C(8)2076(6)4720(4)4153(7)C(9)2475(6)4371(4)3318(7)C(10)1766(6)4170(4)2289(7)C(11)2982(5)1921(3)4317(6)C(12)2070(5)1937(3)3597(6)C(13)1649(5)2511(3)3667(6)C(14)2153(5)3042(3)4459(7)C(15)3077(5)3022(3)5160(6)C(17)1832(5)1276(3)3115(6)C(19)772(3)340(2)1877(5)C(20)-146(3)-38(2)1466(5)C(21)-976(3)138(2)1817(5)C(22)-888(3)693(2)2578(5)C(23)30(3)1071(2)2989(5)C(24)890(5)2807(3)3028(6)C(25)299(3)2570(3)1834(5)C(26)6472(3)2196(3)1031(5)C(27)118(3)1771(3)-100(5)C(28)-811(3)2494(3)375(5)C(30)-630(3)2494(3)375(5)C(31)3666(3)362(13)5842(5)C(32)3274(3)3970(3)6666(5)C(33)3818(3)4477(3)6178(5)C(34)4294(4)2459(3)7314(5)C(35)5148(3)4427(3)6178(5)C(36)4603(3)3849(3)5599(5)C(37)4317(4)2348(3)6077(5)<	C(5)	3094(6)	625(4)	5748(8)	
$\begin{array}{cccccc} C(7) & 1114(6) & 4734(4) & 3617(7) \\ C(8) & 2076(6) & 4720(4) & 4153(7) \\ C(10) & 1766(6) & 4470(4) & 2289(7) \\ C(11) & 2982(5) & 1521(3) & 4317(6) \\ C(12) & 2070(5) & 1937(3) & 3597(6) \\ C(13) & 1649(5) & 2511(3) & 3667(6) \\ C(14) & 2153(5) & 3042(3) & 4459(7) \\ C(15) & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1466(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2207(3) & 1031(5) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(33) & 31818(3) & 4427(3) & 6178(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 31818(3) & 4427(3) & 6178(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5799(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6788(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6788(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \hline \end{array}$	C(6)	891(6)	4392(4)	2462(8)	
$\begin{array}{ccccc} C(8) & 2076(6) & 4720(4) & 4153(7) \\ C(9) & 2475(6) & 4771(4) & 3318(7) \\ C(10) & 1766(6) & 4170(4) & 2289(7) \\ C(11) & 2982(5) & 1921(3) & 4317(6) \\ C(12) & 2070(5) & 1937(3) & 3597(6) \\ C(13) & 1649(5) & 2511(3) & 3667(6) \\ C(14) & 2153(5) & 3042(3) & 4459(7) \\ C(15) & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1817(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(33) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 2374(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4457(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 505(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(44) & 3215(4) & 80(3) & -960(5) \\ C(44) & 3215(4) & 80(3) & -960(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \hline \end{array}$	C(7)	1114(6)	4734(4)	3617(7)	
C(9)2475(6)4371(4)3318(7)C(10)1766(6)4170(4)2289(7)C(11)2982(5)1921(3)4317(6)C(12)2070(5)1937(3)3597(6)C(13)1649(5)2511(3)3667(6)C(14)2153(5)3042(3)4459(7)C(15)3077(5)3022(3)5160(6)C(16)3454(5)2430(3)5156(6)C(17)1832(5)1276(3)3115(6)C(19)772(3)340(2)1877(5)C(20)-146(3)-38(2)1466(5)C(21)-976(3)138(2)1817(5)C(22)-888(3)693(2)2578(5)C(23)30(3)1071(2)2989(5)C(24)890(5)2807(3)3028(6)C(25)299(3)2570(3)1834(5)C(26)6472(3)2196(3)1031(5)C(27)118(3)1971(3)-100(5)C(28)-811(3)2120(3)-428(5)C(30)-630(3)2719(3)1506(5)C(31)3666(3)3621(3)5842(5)C(33)3214(3)457(3)7245(5)C(34)475(3)4776(3)7002(5)C(35)5148(3)4427(3)6178(5)C(36)6403(3)3849(3)6579(5)C(37)4317(4)2348(3)6077(5)C(36)5188(4)2124(3)7825(5)C(41)5878(4)2124(3)7825(5)C(41)5878(4)2124(3)7578(5)<	C(8)	2076(6)	4720(4)	4153(7)	
C1017666417042289(7)C(11)2982(5)1921(3)4317(6)C(12)2070(5)1937(3)3597(6)C(13)1649(5)2511(3)3667(6)C(14)2153(5)3042(3)4459(7)C(15)3077(5)3022(3)5160(6)C(17)1832(5)1276(3)3115(6)C(18)859(3)895(2)2638(5)C(19)772(3)340(2)1877(5)C(20)-146(3)-38(2)1466(5)C(21)-976(3)138(2)1817(5)C(22)-888(3)693(2)2578(5)C(23)30(3)1071(2)2989(5)C(24)890(5)2807(3)3028(6)C(25)299(3)2570(3)1834(5)C(26)6472(3)2196(3)1031(5)C(27)118(3)1971(3)-100(5)C(28)-811(3)2120(3)-488(5)C(30)-630(3)2719(3)1506(5)C(31)3666(3)3621(3)5842(5)C(33)3818(3)4547(3)7245(5)C(34)475(3)4776(3)7002(5)C(35)5148(3)4427(3)6178(5)C(34)4294(4)2449(3)37514(5)C(35)5148(3)4427(3)6178(5)C(36)4603(3)3849(3)5599(5)C(37)4317(4)2348(3)6077(5)C(38)4294(4)2459(3)7314(5)C(39)5063(4)2124(3)7545(5)<	C(9)	2475(6)	4371(4)	3318(7)	
$\begin{array}{c ccccc} C(11) & 2982(5) & 1921(3) & 4317(6) \\ C(12) & 2070(5) & 1937(3) & 3597(6) \\ C(13) & 1649(5) & 2511(3) & 3667(6) \\ C(14) & 2153(5) & 3042(3) & 4459(7) \\ C(15) & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1466(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7743(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2124(3) & 7314(5) \\ C(39) & 5063(4) & 2124(3) & 7314(5) \\ C(40) & 5855(4) & 2124(3) & 7514(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(43) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -457(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(10)	1766(6)	4170(4)	2289(7)	
C12)2070(5)1937(3)3597(6)C(13)1649(5)2511(3)3667(6)C(14)2153(5)3042(3)4459(7)C(15)3077(5)3022(3)5160(6)C(16)3454(5)2430(3)5156(6)C(17)1832(5)1276(3)3115(6)C(19)772(3)340(2)1877(5)C(20) $-146(3)$ $-38(2)$ 1466(5)C(21) $-976(3)$ 138(2)1817(5)C(22) $-888(3)$ 693(2)2578(5)C(23)30(3)1071(2)2989(5)C(24)890(5)2807(3)3028(6)C(25)299(3)2570(3)1834(5)C(26)6472(3)2196(3)1031(5)C(27)118(3)1971(3) $-100(5)$ C(28) $-811(3)$ 2120(3) $-428(5)$ C(29) $-1184(3)$ 2494(3)375(5)C(30) $-630(3)$ 2719(3)1506(5)C(31)3666(3)3621(3)5842(5)C(32)3274(3)3970(3)6666(5)C(33)3818(3)4547(3)7245(5)C(34)475(3)4776(3)7002(5)C(35)5148(3)4427(3)6178(5)C(36)4603(3)3849(3)5599(5)C(37)4317(4)2348(3)6071(5)C(38)4294(4)2443(3)6178(5)C(34)4294(4)2443(3)6178(5)C(35)5148(3)420(3)714(5)C(39)5063(4)2347(3)	C(11)	2982(5)	1921(3)	4317(6)	
$\begin{array}{c ccccc} C(12) & D(10) & D(11) & D(11) & D(12) & D$	C(12)	2070(5)	1937(3)	3597(6)	
$\begin{array}{c ccccc} C(14) & 2153(5) & 3042(3) & 4459(7) \\ C(15) & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1486(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(33) & 318(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(44) & 3722(4) & 705(3) & 970(5) \\ C(44) & 315(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 80(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(12)	1649(5)	2511(3)	3667(6)	
$\begin{array}{c cccc} 1215 & 3077(5) & 3022(3) & 5160(6) \\ C(16) & 3454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1466(5) \\ C(21) & -976(3) & 138(2) & 1877(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(44) & 5878(4) & 2012(3) & 6588(5) \\ C(44) & 5878(4) & 2012(3) & 6588(5) \\ C(44) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(14)	2153(5)	3042(3)	4459(7)	
$\begin{array}{c ccccc} C(16) & 3.454(5) & 2430(3) & 5156(6) \\ C(17) & 1832(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1466(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -1000(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(15)	3077(5)	3022(3)	5160(6)	
$\begin{array}{c cccccc} C(17) & 1324(5) & 1276(3) & 3115(6) \\ C(18) & 859(3) & 895(2) & 2638(5) \\ C(19) & 772(3) & 340(2) & 1877(5) \\ C(20) & -146(3) & -38(2) & 1466(5) \\ C(21) & -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(40) & 5855(4) & 2124(3) & 7225(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 7714(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(16)	3454(5)	2430(3)	5156(6)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(17)	1832(5)	1276(3)	3115(6)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\alpha(1)$	850(3)	805(2)	2638(5)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(10)	772(3)	340(2)	1877(5)	
$\begin{array}{c} C(20) & -140(3) & -36(2) & 140(3) \\ -976(3) & 138(2) & 1817(5) \\ C(22) & -888(3) & 693(2) & 2578(5) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(40) & 5855(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(43) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3008(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \hline \end{array}$	C(19)	146(3)	- 38(2)	1466(5)	
$\begin{array}{ccccc} (22) & -888(3) & 693(2) & 2578(5) \\ (22) & -888(3) & 693(2) & 2578(5) \\ (23) & 30(3) & 1071(2) & 2989(5) \\ (24) & 890(5) & 2807(3) & 3028(6) \\ (25) & 299(3) & 2570(3) & 1834(5) \\ (26) & 6472(3) & 2196(3) & 1031(5) \\ (27) & 118(3) & 1971(3) & -100(5) \\ (28) & -811(3) & 2120(3) & -428(5) \\ (29) & -1184(3) & 2494(3) & 375(5) \\ (20) & -630(3) & 2719(3) & 1506(5) \\ (23) & 3666(3) & 3621(3) & 5842(5) \\ (23) & 3818(3) & 4547(3) & 7245(5) \\ (23) & 3818(3) & 4427(3) & 6666(5) \\ (23) & 3818(3) & 4427(3) & 6178(5) \\ (23) & 3818(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (245) & 3158(4) & -401(3) & 159(5) \\ (246) & 308(4) & -257(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(20)	-140(3)	-30(2)	1817(5)	
$\begin{array}{cccccc} C(22) & -688(3) & 093(2) & 2570(3) \\ C(23) & 30(3) & 1071(2) & 2989(5) \\ C(24) & 890(5) & 2807(3) & 3028(6) \\ C(25) & 299(3) & 2570(3) & 1834(5) \\ C(26) & 6472(3) & 2196(3) & 1031(5) \\ C(27) & 118(3) & 1971(3) & -100(5) \\ C(28) & -811(3) & 2120(3) & -428(5) \\ C(29) & -1184(3) & 2494(3) & 375(5) \\ C(30) & -630(3) & 2719(3) & 1506(5) \\ C(31) & 3666(3) & 3621(3) & 5842(5) \\ C(32) & 3274(3) & 3970(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 42294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(40) & 5855(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(44) & 3215(4) & 80(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(21)	- 970(3)	136(2)	2578(5)	
$\begin{array}{ccccc} (23) & 30(3) & 1071(2) & 2989(3) \\ (24) & 890(5) & 2807(3) & 3028(6) \\ (25) & 299(3) & 2570(3) & 1834(5) \\ (26) & 6472(3) & 2196(3) & 1031(5) \\ (27) & 118(3) & 1971(3) & -100(5) \\ (28) & -811(3) & 2120(3) & -428(5) \\ (29) & -1184(3) & 2494(3) & 375(5) \\ (30) & -630(3) & 2719(3) & 1506(5) \\ (23) & 3666(3) & 3621(3) & 5842(5) \\ (31) & 3666(3) & 3621(3) & 5842(5) \\ (32) & 3274(3) & 3970(3) & 66666(5) \\ (33) & 3818(3) & 4547(3) & 7245(5) \\ (234) & 4755(3) & 4776(3) & 7002(5) \\ (235) & 5148(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (246) & 3608(4) & -257(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1595(2) & 2533(5) \\ \end{array}$	C(22)	- 888(3)	093(2)	2376(3)	
$\begin{array}{ccccc} (24) & 59(3) & 280(3) & 5028(0) \\ (C(25) & 299(3) & 2570(3) & 1834(5) \\ (C(26) & 6472(3) & 2196(3) & 1031(5) \\ (C(27) & 118(3) & 1971(3) & -100(5) \\ (C(28) & -811(3) & 2120(3) & -428(5) \\ (C(29) & -1184(3) & 2494(3) & 375(5) \\ (C(30) & -630(3) & 2719(3) & 1506(5) \\ (C(31) & 3666(3) & 3621(3) & 5842(5) \\ (C(32) & 3274(3) & 3970(3) & 6666(5) \\ (C(33) & 3818(3) & 4547(3) & 7245(5) \\ (C(34) & 4755(3) & 4776(3) & 7002(5) \\ (C(35) & 5148(3) & 4427(3) & 6178(5) \\ (C(36) & 4603(3) & 3849(3) & 5599(5) \\ (C(37) & 4317(4) & 2348(3) & 6077(5) \\ (C(38) & 4294(4) & 2459(3) & 7314(5) \\ (C(39) & 5063(4) & 2347(3) & 8188(5) \\ (C(40) & 5855(4) & 2124(3) & 7825(5) \\ (C(41) & 5878(4) & 2012(3) & 6588(5) \\ (C(42) & 5110(4) & 2124(3) & 5714(5) \\ (C(43) & 3722(4) & 705(3) & 970(5) \\ (C(44) & 3215(4) & 80(3) & 1073(5) \\ (C(45) & 3158(4) & -401(3) & 159(5) \\ (C(47) & 4115(4) & 368(3) & -960(5) \\ (C(48) & 4172(4) & 850(3) & -46(5) \\ (C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(23)	3U(3) 800(5)	10/1(2)	2909(5)	
$\begin{array}{ccccc} (25) & 29(3) & 257(3) & 1634(3) \\ (26) & 6472(3) & 2196(3) & 1031(5) \\ (27) & 118(3) & 1971(3) & -100(5) \\ (28) & -811(3) & 2120(3) & -428(5) \\ (29) & -1184(3) & 2494(3) & 375(5) \\ (30) & -630(3) & 2719(3) & 1506(5) \\ (31) & 3666(3) & 3621(3) & 5842(5) \\ (232) & 3274(3) & 3970(3) & 66666(5) \\ (233) & 3818(3) & 4547(3) & 7245(5) \\ (234) & 4755(3) & 4776(3) & 7002(5) \\ (235) & 5148(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (245) & 3158(4) & -401(3) & 159(5) \\ (246) & 3608(4) & -257(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(24)	890(3)	2607(3)	3026(0) 1824(5)	
$\begin{array}{cccccc} (226) & 6472(3) & 2190(3) & 1031(3) \\ (227) & 118(3) & 1971(3) & -100(5) \\ (228) & -811(3) & 2120(3) & -428(5) \\ (229) & -1184(3) & 2494(3) & 375(5) \\ (230) & -630(3) & 2719(3) & 1506(5) \\ (231) & 3666(3) & 3621(3) & 5842(5) \\ (232) & 3274(3) & 3970(3) & 66666(5) \\ (233) & 3818(3) & 4547(3) & 7245(5) \\ (234) & 4755(3) & 4776(3) & 7002(5) \\ (235) & 5148(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1598(2) & 2533(5) \\ \end{array}$	C(25)	299(3)	2370(3)	1034(5)	
$\begin{array}{cccccc} (27) & 118(3) & 197(3) & -100(3) \\ (28) & -811(3) & 2120(3) & -428(5) \\ (29) & -1184(3) & 2494(3) & 375(5) \\ (30) & -630(3) & 2719(3) & 1506(5) \\ (31) & 3666(3) & 3621(3) & 5842(5) \\ (232) & 3274(3) & 3970(3) & 6666(5) \\ (33) & 3818(3) & 4547(3) & 7245(5) \\ (34) & 4755(3) & 4776(3) & 7002(5) \\ (235) & 5148(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (245) & 3158(4) & -401(3) & 159(5) \\ (246) & 3608(4) & -257(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(26)	6472(3)	2190(3)	1031(3)	
$\begin{array}{cccccc} (28) & -811(3) & 2120(3) & -428(3) \\ (29) & -1184(3) & 2494(3) & 375(5) \\ (30) & -630(3) & 2719(3) & 1506(5) \\ (231) & 3666(3) & 3621(3) & 5842(5) \\ (232) & 3274(3) & 3970(3) & 6666(5) \\ (233) & 3818(3) & 4547(3) & 7245(5) \\ (234) & 4755(3) & 4776(3) & 7002(5) \\ (235) & 5148(3) & 4427(3) & 6178(5) \\ (236) & 4603(3) & 3849(3) & 5599(5) \\ (237) & 4317(4) & 2348(3) & 6077(5) \\ (238) & 4294(4) & 2459(3) & 7314(5) \\ (239) & 5063(4) & 2347(3) & 8188(5) \\ (240) & 5855(4) & 2124(3) & 7825(5) \\ (241) & 5878(4) & 2012(3) & 6588(5) \\ (242) & 5110(4) & 2124(3) & 5714(5) \\ (243) & 3722(4) & 705(3) & 970(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (244) & 3215(4) & 80(3) & 1073(5) \\ (245) & 3158(4) & -401(3) & 159(5) \\ (246) & 3608(4) & -257(3) & -857(5) \\ (247) & 4115(4) & 368(3) & -960(5) \\ (248) & 4172(4) & 850(3) & -46(5) \\ (249) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	$\mathcal{O}(27)$	118(3)	1971(3)	- 100(5)	
$\begin{array}{cccccc} (29) & -1184(3) & 2494(3) & 375(3) \\ (30) & -630(3) & 2719(3) & 1506(5) \\ (C31) & 3666(3) & 3621(3) & 5842(5) \\ (C32) & 3274(3) & 3970(3) & 6666(5) \\ (C33) & 3818(3) & 4547(3) & 7245(5) \\ (C34) & 4755(3) & 4776(3) & 7002(5) \\ (C35) & 5148(3) & 4427(3) & 6178(5) \\ (C36) & 4603(3) & 3849(3) & 5599(5) \\ (C37) & 4317(4) & 2348(3) & 6077(5) \\ (C38) & 4294(4) & 2459(3) & 7314(5) \\ (C40) & 5855(4) & 2124(3) & 7825(5) \\ (C41) & 5878(4) & 2012(3) & 6588(5) \\ (C42) & 5110(4) & 2124(3) & 5714(5) \\ (C43) & 3722(4) & 705(3) & 970(5) \\ (C44) & 3215(4) & 80(3) & 1073(5) \\ (C45) & 3158(4) & -401(3) & 159(5) \\ (C46) & 3608(4) & -257(3) & -857(5) \\ (C47) & 4115(4) & 368(3) & -960(5) \\ (C48) & 4172(4) & 850(3) & -46(5) \\ (C49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(28)	-811(3)	2120(3)	- 428(3)	
$\begin{array}{ccccccc} -630(3) & -630(3) & 2/19(3) & 1506(5) \\ (C(31) & 3666(3) & 3621(3) & 5842(5) \\ (C(32) & 3274(3) & 3970(3) & 6666(5) \\ (C(33) & 3818(3) & 4547(3) & 7245(5) \\ (C(34) & 4755(3) & 4776(3) & 7002(5) \\ (C(35) & 5148(3) & 4427(3) & 6178(5) \\ (C(36) & 4603(3) & 3849(3) & 5599(5) \\ (C(37) & 4317(4) & 2348(3) & 6077(5) \\ (C(38) & 4294(4) & 2459(3) & 7314(5) \\ (C(39) & 5063(4) & 2347(3) & 8188(5) \\ (C(40) & 5855(4) & 2124(3) & 7825(5) \\ (C(41) & 5878(4) & 2012(3) & 6588(5) \\ (C(42) & 5110(4) & 2124(3) & 5714(5) \\ (C(43) & 3722(4) & 705(3) & 970(5) \\ (C(44) & 3215(4) & 80(3) & 1073(5) \\ (C(45) & 3158(4) & -401(3) & 159(5) \\ (C(46) & 3608(4) & -257(3) & -857(5) \\ (C(47) & 4115(4) & 368(3) & -960(5) \\ (C(48) & 4172(4) & 850(3) & -46(5) \\ (C(49) & 5171(3) & 1558(2) & 2533(5) \\ \hline \end{array}$	C(29)	-1184(3)	2494(3)	375(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	- 630(3)	2/19(3)	1506(5)	
$\begin{array}{ccccccc} C(32) & 32/4(3) & 39/0(3) & 6666(5) \\ C(33) & 3818(3) & 4547(3) & 7245(5) \\ C(34) & 4755(3) & 4776(3) & 7002(5) \\ C(35) & 5148(3) & 4427(3) & 6178(5) \\ C(36) & 4603(3) & 3849(3) & 5599(5) \\ C(37) & 4317(4) & 2348(3) & 6077(5) \\ C(38) & 4294(4) & 2459(3) & 7314(5) \\ C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(40) & 5855(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(43) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(31)	3666(3)	3621(3)	5842(5)	
C(33) $3818(3)$ $4547(3)$ $7245(5)$ $C(34)$ $4755(3)$ $4776(3)$ $7002(5)$ $C(35)$ $5148(3)$ $4427(3)$ $6178(5)$ $C(36)$ $4603(3)$ $3849(3)$ $5599(5)$ $C(37)$ $4317(4)$ $2348(3)$ $6077(5)$ $C(38)$ $4294(4)$ $2459(3)$ $7314(5)$ $C(39)$ $5063(4)$ $2347(3)$ $8188(5)$ $C(40)$ $5855(4)$ $2124(3)$ $7825(5)$ $C(41)$ $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(32)	3274(3)	3970(3)	6000(3) 7215(5)	
C(34) $4755(3)$ $4776(3)$ $7002(5)$ $C(35)$ $5148(3)$ $4427(3)$ $6178(5)$ $C(36)$ $4603(3)$ $3849(3)$ $5599(5)$ $C(37)$ $4317(4)$ $2348(3)$ $6077(5)$ $C(38)$ $4294(4)$ $2459(3)$ $7314(5)$ $C(39)$ $5063(4)$ $2347(3)$ $8188(5)$ $C(40)$ $5855(4)$ $2124(3)$ $7825(5)$ $C(41)$ $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(33)	3818(3)	4547(3)	7245(5)	
C(35) $S148(3)$ $4427(3)$ $6178(5)$ $C(36)$ $4603(3)$ $3849(3)$ $5599(5)$ $C(37)$ $4317(4)$ $2348(3)$ $6077(5)$ $C(38)$ $4294(4)$ $2459(3)$ $7314(5)$ $C(39)$ $5063(4)$ $2347(3)$ $8188(5)$ $C(40)$ $5855(4)$ $2124(3)$ $7825(5)$ $C(41)$ $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(45)$ $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(34)	4/55(3)	47/6(3)	/002(5)	
C(36) $4603(3)$ $3849(3)$ $5599(5)$ $C(37)$ $4317(4)$ $2348(3)$ $6077(5)$ $C(38)$ $4294(4)$ $2459(3)$ $7314(5)$ $C(39)$ $5063(4)$ $2347(3)$ $8188(5)$ $C(40)$ $5855(4)$ $2124(3)$ $7825(5)$ $C(41)$ $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(45)$ $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(35)	5148(3)	4427(3)	61/8(5)	
C(37) $431/(4)$ $2348(3)$ $607/(5)$ $C(38)$ $4294(4)$ $2459(3)$ $7314(5)$ $C(39)$ $5063(4)$ $2347(3)$ $8188(5)$ $C(40)$ $5855(4)$ $2124(3)$ $7825(5)$ $C(41)$ $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(45)$ $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(36)	4603(3)	3849(3)	5599(5)	
C(38) $4294(4)$ $2459(3)$ $7514(5)$ C(39) $5063(4)$ $2347(3)$ $8188(5)$ C(40) $5855(4)$ $2124(3)$ $7825(5)$ C(41) $5878(4)$ $2012(3)$ $6588(5)$ C(42) $5110(4)$ $2124(3)$ $5714(5)$ C(43) $3722(4)$ $705(3)$ $970(5)$ C(44) $3215(4)$ $80(3)$ $1073(5)$ C(45) $3158(4)$ $-401(3)$ $159(5)$ C(46) $3608(4)$ $-257(3)$ $-857(5)$ C(47) $4115(4)$ $368(3)$ $-960(5)$ C(48) $4172(4)$ $850(3)$ $-46(5)$ C(49) $5171(3)$ $1558(2)$ $2533(5)$	C(37)	4317(4)	2348(3)	6077(5)	
$\begin{array}{ccccccc} C(39) & 5063(4) & 2347(3) & 8188(5) \\ C(40) & 5855(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(43) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(44) & 3215(4) & -401(3) & 159(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(38)	4294(4)	2459(3)	/314(5)	
$\begin{array}{cccc} C(40) & 5855(4) & 2124(3) & 7825(5) \\ C(41) & 5878(4) & 2012(3) & 6588(5) \\ C(42) & 5110(4) & 2124(3) & 5714(5) \\ C(43) & 3722(4) & 705(3) & 970(5) \\ C(44) & 3215(4) & 80(3) & 1073(5) \\ C(45) & 3158(4) & -401(3) & 159(5) \\ C(46) & 3608(4) & -257(3) & -857(5) \\ C(47) & 4115(4) & 368(3) & -960(5) \\ C(48) & 4172(4) & 850(3) & -46(5) \\ C(49) & 5171(3) & 1558(2) & 2533(5) \\ \end{array}$	C(39)	5063(4)	2347(3)	8188(5)	
C(41) $5878(4)$ $2012(3)$ $6588(5)$ $C(42)$ $5110(4)$ $2124(3)$ $5714(5)$ $C(43)$ $3722(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(45)$ $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(40)	5855(4)	2124(3)	/825(5)	
C(42) $5110(4)$ $2124(3)$ $5714(5)$ C(43) $3722(4)$ $705(3)$ $970(5)$ C(44) $3215(4)$ $80(3)$ $1073(5)$ C(45) $3158(4)$ $-401(3)$ $159(5)$ C(46) $3608(4)$ $-257(3)$ $-857(5)$ C(47) $4115(4)$ $368(3)$ $-960(5)$ C(48) $4172(4)$ $850(3)$ $-46(5)$ C(49) $5171(3)$ $1558(2)$ $2533(5)$	C(41)	5878(4)	2012(3)	6588(5)	
C(43) $3/22(4)$ $705(3)$ $970(5)$ $C(44)$ $3215(4)$ $80(3)$ $1073(5)$ $C(45)$ $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(42)	5110(4)	2124(3)	5/14(5)	
C(44) $3215(4)$ $80(3)$ $1073(5)$ C(45) $3158(4)$ $-401(3)$ $159(5)$ C(46) $3608(4)$ $-257(3)$ $-857(5)$ C(47) $4115(4)$ $368(3)$ $-960(5)$ C(48) $4172(4)$ $850(3)$ $-46(5)$ C(49) $5171(3)$ $1558(2)$ $2533(5)$	C(43)	3722(4)	705(3)	970(5)	
C(45) $3158(4)$ $-401(3)$ $159(5)$ $C(46)$ $3608(4)$ $-257(3)$ $-857(5)$ $C(47)$ $4115(4)$ $368(3)$ $-960(5)$ $C(48)$ $4172(4)$ $850(3)$ $-46(5)$ $C(49)$ $5171(3)$ $1558(2)$ $2533(5)$	C(44)	3215(4)	80(3)	10/3(5)	
C(46) $3608(4)$ $-257(3)$ $-857(5)$ C(47) $4115(4)$ $368(3)$ $-960(5)$ C(48) $4172(4)$ $850(3)$ $-46(5)$ C(49) $5171(3)$ $1558(2)$ $2533(5)$	C(45)	3158(4)	- 401(3)	159(5)	
C(47) 4115(4) 368(3) $-960(5)$ $C(48)$ 4172(4) 850(3) $-46(5)$ $C(49)$ 5171(3) 1558(2) 2533(5)	C(46)	3608(4)	- 257(3)	- 85/(5)	
C(48) 4172(4) 850(3) -46(5) C(49) 5171(3) 1558(2) 2533(5)	C(47)	4115(4)	368(3)	- 900(5)	
C(49) 5171(3) 1558(2) 2533(5)	C(48)	4172(4)	850(3)	- 46(5)	
	((49)	5171(3)	1558(2)	2533(5)	

Table 2 (continued)

C(50)	5685(3)	1200(2)	3357(5)	
C(51)	6703(3)	1329(2)	3568(5)	
C(52)	7208(3)	1816(2)	2955(5)	
C(53)	6694(3)	2174(2)	2130(5)	
C(54)	5676(3)	2045(2)	1919(5)	
C(55)	3465(4)	2026(3)	1434(4)	
C(56)	3780(4)	2642(3)	2014(4)	
C(57)	3549(4)	3187(3)	1423(4)	
C(58)	3002(4)	3116(3)	252(4)	
C(59)	2687(4)	2499(3)	- 329(4)	
C(60)	2919(4)	1954(3)	262(4)	
C(61)	662(4)	3805(2)	6914(4)	
C(62)	1057(4)	4467(2)	6992(4)	
C(63)	1252(4)	4815(2)	8118(4)	
C(64)	1052(4)	4501(2)	9165(4)	
C(65)	657(4)	3839(2)	9087(4)	
C(66)	462(4)	3491(2)	7961(4)	
C(67)	- 966(4)	3506(3)	5058(4)	
C(68)	- 1608(4)	3363(3)	5890(4)	
C(69)	- 2579(4)	3436(3)	5583(4)	
C(70)	- 2908(4)	3654(3)	4445(4)	
C(71)	- 2267(4)	3798(3)	3613(4)	
C(72)	- 1296(4)	3724(3)	3920(4)	
C(73)	202(3)	2531(2)	5786(5)	
C(74)	1022(3)	2307(2)	6364(5)	
C(75)	961(3)	1652(2)	6599(5)	
C(76)	80(3)	1220(2)	6257(5)	
C(77)	- 741(3)	1444(2)	5679(5)	
C(78)	- 680(3)	2099(2)	5443(5)	
C(80)	3438(20)	5882(15)	1110(18)	
Cl(1)	2366(7)	6144(4)	829(8)	
Cl(2)	3900(7)	5996(7)	- 246(10)	

NMR: $\delta(\operatorname{acetone-}d_6) 5.42$ (s, 5H, C₅H₅); 5.59 (s, 5H, C₅H₅); 7.21 (m, 70H, Ph). ¹³C{¹H} NMR: $\delta[\operatorname{CD}_2\operatorname{Cl}_2, \operatorname{Cr}(\operatorname{acac})_3] 91.1, 95.5$ (2 × s, C₅H₅); 129.0–134.0 (m, Ph); 347.6 (s(br), C_a). FAB MS: 1729, $[M + \operatorname{PF}_6]^+$, 1; 1583, $[M - H]^+ \equiv [M']^+$, 23; 1321, $[M' - \operatorname{PPh}_3]^+$, 1; 1059, $[M' - \operatorname{2PPh}_3]^+$, 2; 892, $[M' - \operatorname{Ru}(\operatorname{PPh}_3)(\operatorname{C}_5\operatorname{H}_5)]^+$, 7; 796, $[M' - \operatorname{3PPh}_3]^+$, 6; 691, $[\operatorname{Ru}(\operatorname{PPh}_3)_2(\operatorname{C}_5\operatorname{H}_5)]^+$, 20; 631, $[\operatorname{Ru}(\operatorname{C}_4\operatorname{Ph}_2)(\operatorname{PPh}_3)(\operatorname{C}_5\operatorname{H}_5)]^+$, 12; 429, $[\operatorname{Ru}(\operatorname{PPh}_3)(\operatorname{C}_5\operatorname{H}_5)]^+$, 100.

Crystallography

Intensity data for 9 and 10 were measured at room temperature on an Enraf-Nonius CAD4F diffractometer fitted with Mo- K_{α} (graphite monochromatised) radiation, $\lambda = 0.7107$ Å. The $\omega : 2\theta$ scan technique was employed to measure $N_{\rm m}$ reflections, $N_{\rm u}$ of which were unique and $N_{\rm o}$ were considered observed with $I \ge 2.5\sigma(I)$. Lorentz, polarisation and absorption (analytical procedure) corrections were applied [27]. The structures were each solved from a Patterson synthesis and each was refined by a block-matrix least-squares procedure with SHELX76 [27]. Phenyl groups were refined as hexagonal rigid groups. For 9, the Ru, P and C atoms of the C₈ moiety and the CH₂Cl₂ solvent molecule were refined anisotropi-

Table 3

Fractional atomic coordinates ($\times 10^5$ for Ru; $\times 10^4$	for remaining atoms) for $\{Ru(PPh_3)(\eta - C_5H_5)\}_2\{\mu$
$C_{10}Ph_4(C_6H_4)$ (10)	

Ru(1)	- 1151(11)	- 34146(9)	25799(9)	
Ru(2)	23295(11)	17173(9)	8923(8)	
P(1)	1420(4)	- 3026(3)	3667(3)	
P(2)	3798(4)	2554(3)	1916(3)	
C(1)	- 1975(14)	- 4271(12)	2123(16)	
C(2)	-1342(18)	-4374(12)	1584(13)	
C(3)	- 582(16)	- 4789(12)	2011(14)	
C(4)	-733(16)	-4930(12)	2810(14)	
$\alpha(5)$	-1633(17)	- 4644(11)	2893(13)	
C(6)	1498(16)	1771(14)	-392(10)	
(77)	2567(16)	2481(11)	-279(10)	
C(8)	3449(15)	2107(13)	-35(9)	
C(9)	2889(16)	1128(12)	-60(10)	
C(10)	1675(14)	916(13)	-255(9)	
C(10)	-444(13)	-2327(10)	2610(10)	
C(12)	217(12)	-1527(10)	2237(9)	
C(12)	933(12)	-1731(9)	1802(9)	
C(14)	896(12)	- 2600(10)	1863(9)	
C(14)	1539(12)	-924(11)	1412(10)	
C(15)	1230(12)	-248(10)	1607(9)	
C(10)	401(12)	-606(10)	2008(0)	
C(18)	122(13)	110(11)	2316(9)	
C(10)	600(13)	894(10)	1909(9)	
C(19)	1407(12)	737(10)	1480(0)	
C(20)	602(12)	1802(0)	1705(10)	
C(21)	1404(12)	2214(11)	1793(10)	
C(22)	1404(12)	2314(11)	1265(5)	
(23)	1470(14)	3207(11)	1111(11)	
C(24)	840(13) 180(14)	3302(12)	1400(12)	
(125)	180(14)	3034(11)	1971(11)	
C(20)	39(13) 1476(0)	2149(10)	2149(10)	
C(27)	- 1470(9)	-2334(7)	2051(5)	
C(28)	- 2248(9)	-2034(7)	2540(5)	
C(29)	- 3203(9)	- 2139(7)	2342(3)	
C(30)	- 3506(9)	- 2503(7)	3233(3) 2766(E)	
	- 2/34(9)	-2005(7)	3700(3) 2564(5)	
C(32)	-1/19(9)	-27/9(7)	3304(3)	
(33)	1450(8)	- 2967(8)	1390(7)	
C(34)	804(8)	- 3362(8)	041(7)	
	1357(8)	- 3/08(8)	23/(7) 582(7)	
C(36)	2430(8)	- 3/ /8(8)	582(7) 1221(7)	
0(37)	3021(8)	- 3383(8)	1551(7)	
C(38)	2528(8)	- 297/(8)	1/35(7)	
C(39)	2346(7)	-890(7)	918(7)	
C(40)	1922(7)	-1158(7)	11/(7)	
C(41)	2040(7)	-1253(7)	-321(7)	
C(42)	3/81(/)	-1000(7)	41(7)	
C(43)	4204(7)	-812(7)	042(7) 1280(7)	
C(44)	348/(/)	- /1/(/) _ 2(9)	1200(7)	
C(45)	- 004(8)	- 3(8)	2043(7)	
C(40)	- <u>ጋ</u> ሪካላሪ/ 1100(0)	- 203(0)	5051(7) A1A5(7)	
$\mathcal{O}(4)$	- 1109(8)	- 391(0)	414J(/) 2877(7)	
C(48)	- 2104(8)	-210(0)	2086(7)	
(49)	- 23 /9(8)	02(8)		

Table 3 (continued)

C(50)	- 1659(8)	170(8)	2572(7)	
C(51)	2166(11)	- 3808(8)	3951(7)	
C(52)	2794(11)	- 3824(8)	4729(7)	
C(53)	3402(11)	- 4390(8)	4919(7)	
C(54)	3382(11)	- 4942(8)	4330(7)	
C(55)	2755(11)	4926(8)	3552(7)	
C(56)	2147(11)	4360(8)	3362(7)	
C(57)	2618(10)	1946(6)	3671(7)	
C(58)	3711(10)	- 1909(6)	3698(7)	
C(59)	4590(10)	- 1080(6)	3651(7)	
C(60)	4377(10)	- 287(6)	3578(7)	
C(61)	3284(10)	- 325(6)	3552(7)	
C(62)	2404(10)	- 1154(6)	3599(7)	
C(63)	980(10)	- 3002(7)	4614(9)	
C(64)	1304(10)	- 2232(7)	5074(9)	
C(65)	800(10)	- 2268(7)	5710(9)	
C(66)	- 29(10)	- 3073(7)	5886(9)	
C(67)	- 354(10)	- 3843(7)	5427(9)	
C(68)	151(10)	- 3807(7)	4790(9)	
C(69)	5130(7)	2396(7)	1968(7)	
C(70)	5030(7)	1524(7)	1827(7)	
C(71)	6006(7)	1327(7)	1931(7)	
C(72)	7082(7)	2002(7)	2177(7)	
C(73)	7181(7)	2874(7)	2318(7)	
C(74)	6205(7)	3071(7)	2214(7)	
C(75)	4283(10)	3784(8)	1828(6)	
C(76)	4569(10)	4333(8)	2493(6)	
C(77)	4996(10)	5269(8)	2413(6)	
C(78)	5137(10)	5656(8)	1669(6)	
C(79)	4851(10)	5107(8)	1004(6)	
C(80)	4424(10)	4171(8)	1084(6)	
C(81)	3667(9)	2375(8)	2962(9)	
C(82)	4397(9)	2050(8)	3517(9)	
C(83)	4268(9)	1889(8)	4305(9)	
C(84)	3410(9)	2051(8)	4537(9)	
C(85)	2680(9)	2375(8)	3982(9)	
C(86)	2809(9)	2537(8)	3194(9)	

cally; for 10, non-phenyl atoms were refined anisotropically. Hydrogen atoms were not included in the structure factor calculations. A weighting scheme of the form $w = k/[\sigma^2(F) + g |F|^2]$ was applied and the refinement continued until convergence in each case. Fractional atomic coordinates are listed in Tables 2 and 3 and the crystallographic numbering schemes used are shown in Figs. 1 and 2 which were drawn with the ORTEP [28] program at 15% probability ellipsoids. Scattering factors for neutral Ru (corrected for f' and f'') were from ref. 29 and those for the remaining atoms were as incorporated in SHELX76 [27].

Crystal and refinement data

9: $\{\text{Ru}(\text{PPh}_3)(\eta - C_5 H_5)\}_2 C_8 \text{Ph}_4 \cdot \text{CH}_2 \text{Cl}_2 \equiv C_{78} H_{60} P_2 \text{Ru}_2 \cdot \text{CH}_2 \text{Cl}_2, M = 1346.3, \text{ triclinic, space group } P\overline{1}, a = 14.108(1), b = 20.949(3), c = 11.117(2) \text{ Å}, a = 91.51(1), \beta = 99.03(1), \gamma = 100.14(1)^\circ, V = 3189(4) \text{ Å}^3, D_c (Z = 2) = 1.402 \text{ g}$

cm⁻³. Crystal dimensions $0.16 \times 0.18 \times 0.42$ mm, $N_{\rm m} = 10449$, $\theta_{\rm max} = 23^{\circ}$, (ranges $\pm h$, $\pm k$, -l), $N_{\rm u} = 8874$, $\mu = 6.10$ cm⁻¹, max/min transmission factors 0.953, 0.899, $R_{\rm int} = 0.063$, $N_{\rm o} = 6269$, F(000) = 1426, R = 0.055, $R_{\rm w} = 0.058$, k = 1.0, g = 0.0001.

10: $\{\text{Ru}(\text{PPh}_3)(\eta - C_5 H_5)\}_2 C_{10} \text{Ph}_4(C_6 H_4) \equiv C_{86} H_{64} P_2 \text{Ru}_2, M = 1361.5, \text{ triclinic,} \text{space group } P\overline{1}, a = 13.056(8), b = 16.08(1), c = 17.219(7) \text{ Å}, \alpha = 84.85(4), \beta = 104.01(4), \gamma = 112.73(6)^\circ, V = 3235(6) \text{ Å}^3, D_c (Z = 2) = 1.398 \text{ g cm}^{-3}. \text{ Crystal dimensions } 0.06 \times 0.26 \times 0.17 \text{ mm}, N_m = 7021, \theta_{max} = 20^\circ, (\text{ranges } \pm h, \pm k, -l), N_u = 6055, \mu = 5.21 \text{ cm}^{-1}, \text{max/min transmission factors } 0.968, 0.881, R_{\text{int}} = 0.039, N_o = 3600, F(000) = 1396, R = 0.072, R_w = 0.071, k = 1.7, g = 0.0010.$

Supplementary material available. Tables of bond lengths and angles, thermal parameters, H atom parameters and structure factors may be obtained from ERTT.

Acknowledgements

We thank the Australian Research Council for financial support, and the Australian Government for a Commonwealth Post-graduate Research Scholarship (GAK). Some initial experiments were performed by Dr J.D. Walsh.

References

- 1 Part XXXV: M.I. Bruce and G.A. Koutsantonis, Aust. J. Chem., 44 (1991) 207.
- 2 (a) J.L. Davidson, in P.S. Braterman (Ed.), Reactions of Coordinated Ligands, Vol. 1, Plenum, New York, 1986, p. 825; (b) M.J. Winter, in F.R. Hartley and S. Patai (Eds.), The Chemistry of the Metal-Carbon Bond, Vol. 3, Wiley, New York, 1985, p. 259.
- 3 R.E. Colburn and K.P.C. Vollhardt, J. Am. Chem. Soc., 103 (1981) 6259.
- 4 M.I. Bruce, G.A. Koutsantonis, E.R.T. Tiekink and B.K. Nicholson, J. Organomet. Chem., 420 (1991) 271.
- 5 (a) W. Geibel, G. Wilke, R. Goddard, C. Krüger and R. Mynott, J. Organomet. Chem., 102 (1980) 2576; (b) S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.H. Winter and P. Woodward, J. Chem. Soc., Chem. Commun., (1978) 221; J. Chem. Soc., Dalton Trans., (1982) 173; (c) M. Green, N.C. Norman and A.G. Orpen, J. Am. Chem. Soc., 103 (1981) 1269; (d) M.J. Mays, D.W. Prest and P.R. Raithby, J. Chem. Soc., Dalton Trans., (1981) 771.
- 6 (a) C. Glaser, Ber., 2 (1869) 422; (b) G. Eglinton and W. McCrae, Adv. Org. Chem., 4 (1963) 225; (c)
 U. Niedballa, in E. Müller (Ed.), Houben-Weyl: Methoden der Organischen Chemie, Vol. 5.2a, Georg-Thieme Verlag, Stuttgart, 1977, p. 925.
- 7 P. Cadiot and W. Chodkiewicz, in H.G. Viehe (Ed.), Chemistry of Acetylenes, Marcel Dekker, New York, 1969, p. 609.
- 8 D.G. Sekutowski and G.D. Stucky, J. Am. Chem. Soc., 98 (1976) 1376.
- 9 N.A. Ustynyuk, V.N. Vinogradova, V.N. Korneva, D.N. Kravtsov, V.G. Andrianov and Yu.T. Struchkov, J. Organomet. Chem., 277 (1984) 285.
- 10 J. Götzig, H. Otto and H. Werner, J. Organomet. Chem., 287 (1985) 247.
- 11 L.D. Field, A.V. George and T.W. Hambley, Inorg. Chem., 29 (1990) 4565.
- 12 A. Hills, D.L. Hughes, M. Jimenez-Tenorio, G.J. Leigh, C.A. McGeary, A.T. Rowley, M. Bravo, C.E. McKenna and M.-C. McKenna, J. Chem. Soc., Chem. Commun., (1991) 522.
- 13 G. Jia, A.L. Rheingold and D.W. Meek, Organometallics, 8 (1989) 1378.
- 14 M.I. Bruce, R.C.F. Gardner, J.A.K. Howard, F.G.A. Stone, M. Welling and P. Woodward, J. Chem. Soc., Dalton Trans., (1977) 621.
- 15 H.F. Klein, H. Beck-Hemetsberger, L. Reitzel, B. Rodenhäuser and G. Cordier, Chem. Ber., 122 (1989) 43.
- 16 A. Dobson, D.S. Moore, S.D. Robinson, M.B. Hursthouse and L. New, J. Organomet. Chem., 177 (1979) C8; Polyhedron, 4 (1985) 1119.

- 17 (a) O.M. Abu Salah and M.I. Bruce, Aust. J. Chem., 29 (1976) 531; (b) O.M. Abu Salah and M.I. Bruce, Aust. J. Chem., 30 (1977) 2639; (c) O.M. Abu Salah, M.I. Bruce and A.D. Redhouse, J. Chem. Soc., Chem. Commun., (1974) 855; (d) O.M. Abu Salah and M.I. Bruce, J. Chem. Soc., Dalton Trans., (1974) 2302.
- 18 O.M. Abu Salah and M.I. Bruce, J. Chem. Soc., Dalton Trans., (1975) 2311.
- 19 M.I. Bruce, T.W. Hambley, M.R. Snow and A.G. Swincer, Organometallics, 4 (1985) 501.
- 20 M. Crocker, M. Green, A.G. Orpen, H.-P. Neumann and C.J. Schaverien, J. Chem. Soc., Chem. Commun., (1984) 1351.
- 21 M.O. Albers, D.J.A. de Waal, D.C. Liles, D.J. Robinson, E. Singleton and M.B. Wiege, J. Chem. Soc., Chem. Commun., (1986) 1681.
- 22 R.S. Iyer and J.P. Selegue, J. Am. Chem. Soc., 109 (1987) 910.
- 23 G.A. Carriedo, D. Miguel, V. Riera and X. Solans, J. Chem. Soc., Dalton Trans., (1987) 2867.
- 24 M.I. Bruce, M.P. Cifuentes, M.R. Snow and E.R.T. Tiekink, J. Organomet. Chem., 359 (1989) 379.
- 25 R.L. Beddoes, C. Bitcon, A. Ricalton and M. W. Whiteley, J. Organomet. Chem., 367 (1989) C21.
- 26 M.I. Bruce, C. Hameister, A.G. Swincer and R.C. Wallis, Inorg. Synth., 21 (1982) 78.
- 27 G.M. Sheldrick, SHELX76. Program for Crystal Structure Determination, University of Cambridge, England, 1976.
- 28 C.K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 29 J.A. Ibers and W.C. Hamilton (Eds.), International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974, pp. 99, 154.